Best Known (97−26, 97, s)-Nets in Base 3
(97−26, 97, 228)-Net over F3 — Constructive and digital
Digital (71, 97, 228)-net over F3, using
- 31 times duplication [i] based on digital (70, 96, 228)-net over F3, using
- trace code for nets [i] based on digital (6, 32, 76)-net over F27, using
- net from sequence [i] based on digital (6, 75)-sequence over F27, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F27 with g(F) = 6 and N(F) ≥ 76, using
- net from sequence [i] based on digital (6, 75)-sequence over F27, using
- trace code for nets [i] based on digital (6, 32, 76)-net over F27, using
(97−26, 97, 374)-Net over F3 — Digital
Digital (71, 97, 374)-net over F3, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(397, 374, F3, 26) (dual of [374, 277, 27]-code), using
- 276 step Varšamov–Edel lengthening with (ri) = (9, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 14 times 0) [i] based on linear OA(326, 27, F3, 26) (dual of [27, 1, 27]-code or 27-arc in PG(25,3)), using
- dual of repetition code with length 27 [i]
- 276 step Varšamov–Edel lengthening with (ri) = (9, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 14 times 0) [i] based on linear OA(326, 27, F3, 26) (dual of [27, 1, 27]-code or 27-arc in PG(25,3)), using
(97−26, 97, 10277)-Net in Base 3 — Upper bound on s
There is no (71, 97, 10278)-net in base 3, because
- the generalized Rao bound for nets shows that 3m ≥ 19088 875182 064485 248555 037335 494173 933858 088469 > 397 [i]