Best Known (78, 78+27, s)-Nets in Base 3
(78, 78+27, 252)-Net over F3 — Constructive and digital
Digital (78, 105, 252)-net over F3, using
- trace code for nets [i] based on digital (8, 35, 84)-net over F27, using
- net from sequence [i] based on digital (8, 83)-sequence over F27, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F27 with g(F) = 8 and N(F) ≥ 84, using
- net from sequence [i] based on digital (8, 83)-sequence over F27, using
(78, 78+27, 459)-Net over F3 — Digital
Digital (78, 105, 459)-net over F3, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(3105, 459, F3, 27) (dual of [459, 354, 28]-code), using
- 353 step Varšamov–Edel lengthening with (ri) = (9, 5, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 15 times 0, 1, 16 times 0, 1, 17 times 0) [i] based on linear OA(327, 28, F3, 27) (dual of [28, 1, 28]-code or 28-arc in PG(26,3)), using
- dual of repetition code with length 28 [i]
- 353 step Varšamov–Edel lengthening with (ri) = (9, 5, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 15 times 0, 1, 16 times 0, 1, 17 times 0) [i] based on linear OA(327, 28, F3, 27) (dual of [28, 1, 28]-code or 28-arc in PG(26,3)), using
(78, 78+27, 18580)-Net in Base 3 — Upper bound on s
There is no (78, 105, 18581)-net in base 3, because
- 1 times m-reduction [i] would yield (78, 104, 18581)-net in base 3, but
- the generalized Rao bound for nets shows that 3m ≥ 41 764134 282557 466195 133060 173270 445568 509460 666907 > 3104 [i]