Best Known (218−43, 218, s)-Nets in Base 3
(218−43, 218, 688)-Net over F3 — Constructive and digital
Digital (175, 218, 688)-net over F3, using
- 6 times m-reduction [i] based on digital (175, 224, 688)-net over F3, using
- trace code for nets [i] based on digital (7, 56, 172)-net over F81, using
- net from sequence [i] based on digital (7, 171)-sequence over F81, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F81 with g(F) = 7 and N(F) ≥ 172, using
- net from sequence [i] based on digital (7, 171)-sequence over F81, using
- trace code for nets [i] based on digital (7, 56, 172)-net over F81, using
(218−43, 218, 2507)-Net over F3 — Digital
Digital (175, 218, 2507)-net over F3, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(3218, 2507, F3, 43) (dual of [2507, 2289, 44]-code), using
- 298 step Varšamov–Edel lengthening with (ri) = (4, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 5 times 0, 1, 7 times 0, 1, 10 times 0, 1, 13 times 0, 1, 17 times 0, 1, 22 times 0, 1, 27 times 0, 1, 33 times 0, 1, 40 times 0, 1, 47 times 0, 1, 53 times 0) [i] based on linear OA(3197, 2188, F3, 43) (dual of [2188, 1991, 44]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 2188 | 314−1, defining interval I = [0,21], and minimum distance d ≥ |{−21,−20,…,21}|+1 = 44 (BCH-bound) [i]
- 298 step Varšamov–Edel lengthening with (ri) = (4, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 5 times 0, 1, 7 times 0, 1, 10 times 0, 1, 13 times 0, 1, 17 times 0, 1, 22 times 0, 1, 27 times 0, 1, 33 times 0, 1, 40 times 0, 1, 47 times 0, 1, 53 times 0) [i] based on linear OA(3197, 2188, F3, 43) (dual of [2188, 1991, 44]-code), using
(218−43, 218, 369565)-Net in Base 3 — Upper bound on s
There is no (175, 218, 369566)-net in base 3, because
- 1 times m-reduction [i] would yield (175, 217, 369566)-net in base 3, but
- the generalized Rao bound for nets shows that 3m ≥ 34 302365 442665 320274 326180 479987 720626 958734 318521 116463 118394 804202 866709 603623 140639 783922 594125 115189 > 3217 [i]