Best Known (82−50, 82, s)-Nets in Base 3
(82−50, 82, 38)-Net over F3 — Constructive and digital
Digital (32, 82, 38)-net over F3, using
- net from sequence [i] based on digital (32, 37)-sequence over F3, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F3 with g(F) = 32 and N(F) ≥ 38, using
(82−50, 82, 42)-Net over F3 — Digital
Digital (32, 82, 42)-net over F3, using
- t-expansion [i] based on digital (29, 82, 42)-net over F3, using
- net from sequence [i] based on digital (29, 41)-sequence over F3, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F3 with g(F) = 29 and N(F) ≥ 42, using
- net from sequence [i] based on digital (29, 41)-sequence over F3, using
(82−50, 82, 138)-Net in Base 3 — Upper bound on s
There is no (32, 82, 139)-net in base 3, because
- extracting embedded orthogonal array [i] would yield OA(382, 139, S3, 50), but
- the linear programming bound shows that M ≥ 1587 399042 866016 986303 890803 537138 245492 206166 258555 218457 073292 762725 146456 195326 962155 694534 950498 243860 513481 979544 181045 609868 510228 655317 898137 944968 273836 801278 213469 / 1 121662 775947 035202 501592 579753 339451 946215 941077 958998 362092 006927 786507 022495 318993 197038 312138 033878 088343 981406 194796 277022 130176 > 382 [i]