Best Known (33, 33+52, s)-Nets in Base 3
(33, 33+52, 38)-Net over F3 — Constructive and digital
Digital (33, 85, 38)-net over F3, using
- t-expansion [i] based on digital (32, 85, 38)-net over F3, using
- net from sequence [i] based on digital (32, 37)-sequence over F3, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F3 with g(F) = 32 and N(F) ≥ 38, using
- net from sequence [i] based on digital (32, 37)-sequence over F3, using
(33, 33+52, 46)-Net over F3 — Digital
Digital (33, 85, 46)-net over F3, using
- net from sequence [i] based on digital (33, 45)-sequence over F3, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F3 with g(F) = 33 and N(F) ≥ 46, using
(33, 33+52, 138)-Net in Base 3 — Upper bound on s
There is no (33, 85, 139)-net in base 3, because
- extracting embedded orthogonal array [i] would yield OA(385, 139, S3, 52), but
- the linear programming bound shows that M ≥ 25187 471495 546450 938829 166628 945306 291038 411946 137194 049987 820699 630759 367931 165327 613809 362902 650627 817783 270689 253835 813240 163063 / 655379 887178 349656 963856 190956 437056 740438 060960 854359 735199 515832 284477 226278 150220 800000 > 385 [i]