Best Known (120, 155, s)-Nets in Base 3
(120, 155, 464)-Net over F3 — Constructive and digital
Digital (120, 155, 464)-net over F3, using
- t-expansion [i] based on digital (119, 155, 464)-net over F3, using
- 1 times m-reduction [i] based on digital (119, 156, 464)-net over F3, using
- trace code for nets [i] based on digital (2, 39, 116)-net over F81, using
- net from sequence [i] based on digital (2, 115)-sequence over F81, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F81 with g(F) = 2 and N(F) ≥ 116, using
- net from sequence [i] based on digital (2, 115)-sequence over F81, using
- trace code for nets [i] based on digital (2, 39, 116)-net over F81, using
- 1 times m-reduction [i] based on digital (119, 156, 464)-net over F3, using
(120, 155, 1030)-Net over F3 — Digital
Digital (120, 155, 1030)-net over F3, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(3155, 1030, F3, 35) (dual of [1030, 875, 36]-code), using
- 874 step Varšamov–Edel lengthening with (ri) = (12, 6, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 5 times 0, 1, 6 times 0, 1, 7 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 7 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 20 times 0, 1, 21 times 0, 1, 21 times 0, 1, 22 times 0, 1, 23 times 0, 1, 24 times 0, 1, 24 times 0, 1, 26 times 0, 1, 26 times 0, 1, 27 times 0, 1, 28 times 0, 1, 29 times 0, 1, 31 times 0) [i] based on linear OA(335, 36, F3, 35) (dual of [36, 1, 36]-code or 36-arc in PG(34,3)), using
- dual of repetition code with length 36 [i]
- 874 step Varšamov–Edel lengthening with (ri) = (12, 6, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 5 times 0, 1, 6 times 0, 1, 7 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 7 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 20 times 0, 1, 21 times 0, 1, 21 times 0, 1, 22 times 0, 1, 23 times 0, 1, 24 times 0, 1, 24 times 0, 1, 26 times 0, 1, 26 times 0, 1, 27 times 0, 1, 28 times 0, 1, 29 times 0, 1, 31 times 0) [i] based on linear OA(335, 36, F3, 35) (dual of [36, 1, 36]-code or 36-arc in PG(34,3)), using
(120, 155, 75331)-Net in Base 3 — Upper bound on s
There is no (120, 155, 75332)-net in base 3, because
- 1 times m-reduction [i] would yield (120, 154, 75332)-net in base 3, but
- the generalized Rao bound for nets shows that 3m ≥ 29 971580 840095 648082 285012 695168 627887 868521 279245 410859 124098 239047 357321 > 3154 [i]