Best Known (184, 229, s)-Nets in Base 3
(184, 229, 688)-Net over F3 — Constructive and digital
Digital (184, 229, 688)-net over F3, using
- 7 times m-reduction [i] based on digital (184, 236, 688)-net over F3, using
- trace code for nets [i] based on digital (7, 59, 172)-net over F81, using
- net from sequence [i] based on digital (7, 171)-sequence over F81, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F81 with g(F) = 7 and N(F) ≥ 172, using
- net from sequence [i] based on digital (7, 171)-sequence over F81, using
- trace code for nets [i] based on digital (7, 59, 172)-net over F81, using
(184, 229, 2647)-Net over F3 — Digital
Digital (184, 229, 2647)-net over F3, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(3229, 2647, F3, 45) (dual of [2647, 2418, 46]-code), using
- 2417 step Varšamov–Edel lengthening with (ri) = (16, 7, 5, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 20 times 0, 1, 20 times 0, 1, 21 times 0, 1, 21 times 0, 1, 22 times 0, 1, 22 times 0, 1, 23 times 0, 1, 24 times 0, 1, 24 times 0, 1, 25 times 0, 1, 26 times 0, 1, 26 times 0, 1, 27 times 0, 1, 28 times 0, 1, 29 times 0, 1, 29 times 0, 1, 30 times 0, 1, 31 times 0, 1, 32 times 0, 1, 33 times 0, 1, 33 times 0, 1, 35 times 0, 1, 35 times 0, 1, 36 times 0, 1, 38 times 0, 1, 38 times 0, 1, 39 times 0, 1, 41 times 0, 1, 41 times 0, 1, 43 times 0, 1, 43 times 0, 1, 45 times 0, 1, 46 times 0, 1, 47 times 0, 1, 49 times 0, 1, 49 times 0, 1, 51 times 0, 1, 53 times 0, 1, 53 times 0, 1, 55 times 0, 1, 57 times 0, 1, 58 times 0, 1, 60 times 0, 1, 61 times 0, 1, 63 times 0) [i] based on linear OA(345, 46, F3, 45) (dual of [46, 1, 46]-code or 46-arc in PG(44,3)), using
- dual of repetition code with length 46 [i]
- 2417 step Varšamov–Edel lengthening with (ri) = (16, 7, 5, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 20 times 0, 1, 20 times 0, 1, 21 times 0, 1, 21 times 0, 1, 22 times 0, 1, 22 times 0, 1, 23 times 0, 1, 24 times 0, 1, 24 times 0, 1, 25 times 0, 1, 26 times 0, 1, 26 times 0, 1, 27 times 0, 1, 28 times 0, 1, 29 times 0, 1, 29 times 0, 1, 30 times 0, 1, 31 times 0, 1, 32 times 0, 1, 33 times 0, 1, 33 times 0, 1, 35 times 0, 1, 35 times 0, 1, 36 times 0, 1, 38 times 0, 1, 38 times 0, 1, 39 times 0, 1, 41 times 0, 1, 41 times 0, 1, 43 times 0, 1, 43 times 0, 1, 45 times 0, 1, 46 times 0, 1, 47 times 0, 1, 49 times 0, 1, 49 times 0, 1, 51 times 0, 1, 53 times 0, 1, 53 times 0, 1, 55 times 0, 1, 57 times 0, 1, 58 times 0, 1, 60 times 0, 1, 61 times 0, 1, 63 times 0) [i] based on linear OA(345, 46, F3, 45) (dual of [46, 1, 46]-code or 46-arc in PG(44,3)), using
(184, 229, 398575)-Net in Base 3 — Upper bound on s
There is no (184, 229, 398576)-net in base 3, because
- 1 times m-reduction [i] would yield (184, 228, 398576)-net in base 3, but
- the generalized Rao bound for nets shows that 3m ≥ 6 076504 881786 145537 379810 895704 218964 823693 270328 392546 562297 220355 767426 254642 528857 140403 613172 783903 281569 > 3228 [i]