Best Known (64, 88, s)-Nets in Base 3
(64, 88, 204)-Net over F3 — Constructive and digital
Digital (64, 88, 204)-net over F3, using
- 31 times duplication [i] based on digital (63, 87, 204)-net over F3, using
- trace code for nets [i] based on digital (5, 29, 68)-net over F27, using
- net from sequence [i] based on digital (5, 67)-sequence over F27, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F27 with g(F) = 5 and N(F) ≥ 68, using
- net from sequence [i] based on digital (5, 67)-sequence over F27, using
- trace code for nets [i] based on digital (5, 29, 68)-net over F27, using
(64, 88, 327)-Net over F3 — Digital
Digital (64, 88, 327)-net over F3, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(388, 327, F3, 24) (dual of [327, 239, 25]-code), using
- 238 step Varšamov–Edel lengthening with (ri) = (8, 5, 3, 2, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 13 times 0) [i] based on linear OA(324, 25, F3, 24) (dual of [25, 1, 25]-code or 25-arc in PG(23,3)), using
- dual of repetition code with length 25 [i]
- 238 step Varšamov–Edel lengthening with (ri) = (8, 5, 3, 2, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 13 times 0) [i] based on linear OA(324, 25, F3, 24) (dual of [25, 1, 25]-code or 25-arc in PG(23,3)), using
(64, 88, 8329)-Net in Base 3 — Upper bound on s
There is no (64, 88, 8330)-net in base 3, because
- the generalized Rao bound for nets shows that 3m ≥ 970395 296062 712739 438136 274903 308140 895609 > 388 [i]