Best Known (23−4, 23, s)-Nets in Base 32
(23−4, 23, large)-Net over F32 — Constructive and digital
Digital (19, 23, large)-net over F32, using
- 321 times duplication [i] based on digital (18, 22, large)-net over F32, using
- (u, u+v)-construction [i] based on
- digital (0, 2, 33)-net over F32, using
- digital (16, 20, 8388602)-net over F32, using
- net defined by OOA [i] based on linear OOA(3220, 8388602, F32, 6, 4) (dual of [(8388602, 6), 50331592, 5]-NRT-code), using
- OOA stacking with additional row [i] based on linear OOA(3220, large, F32, 2, 4), using
- generalized (u, u+v)-construction [i] based on
- linear OOA(320, 524290, F32, 2, 0) (dual of [(524290, 2), 1048580, 1]-NRT-code), using
- discarding factors / shortening the dual code based on linear OOA(320, s, F32, 2, 0) with arbitrarily large s, using
- linear OOA(320, 524290, F32, 2, 0) (dual of [(524290, 2), 1048580, 1]-NRT-code) (see above)
- linear OOA(320, 524290, F32, 2, 0) (dual of [(524290, 2), 1048580, 1]-NRT-code) (see above)
- linear OOA(320, 524290, F32, 2, 0) (dual of [(524290, 2), 1048580, 1]-NRT-code) (see above)
- linear OOA(320, 524290, F32, 2, 0) (dual of [(524290, 2), 1048580, 1]-NRT-code) (see above)
- linear OOA(320, 524290, F32, 2, 0) (dual of [(524290, 2), 1048580, 1]-NRT-code) (see above)
- linear OOA(320, 524290, F32, 2, 0) (dual of [(524290, 2), 1048580, 1]-NRT-code) (see above)
- linear OOA(320, 524290, F32, 2, 0) (dual of [(524290, 2), 1048580, 1]-NRT-code) (see above)
- linear OOA(320, 524290, F32, 2, 0) (dual of [(524290, 2), 1048580, 1]-NRT-code) (see above)
- linear OOA(320, 524290, F32, 2, 0) (dual of [(524290, 2), 1048580, 1]-NRT-code) (see above)
- linear OOA(320, 524290, F32, 2, 0) (dual of [(524290, 2), 1048580, 1]-NRT-code) (see above)
- linear OOA(320, 524290, F32, 2, 0) (dual of [(524290, 2), 1048580, 1]-NRT-code) (see above)
- linear OOA(320, 524290, F32, 2, 0) (dual of [(524290, 2), 1048580, 1]-NRT-code) (see above)
- linear OOA(320, 524290, F32, 2, 0) (dual of [(524290, 2), 1048580, 1]-NRT-code) (see above)
- linear OOA(320, 524290, F32, 2, 0) (dual of [(524290, 2), 1048580, 1]-NRT-code) (see above)
- linear OOA(320, 524290, F32, 2, 0) (dual of [(524290, 2), 1048580, 1]-NRT-code) (see above)
- linear OOA(320, 524290, F32, 2, 0) (dual of [(524290, 2), 1048580, 1]-NRT-code) (see above)
- linear OOA(320, 524290, F32, 2, 0) (dual of [(524290, 2), 1048580, 1]-NRT-code) (see above)
- linear OOA(320, 524290, F32, 2, 0) (dual of [(524290, 2), 1048580, 1]-NRT-code) (see above)
- linear OOA(320, 524290, F32, 2, 0) (dual of [(524290, 2), 1048580, 1]-NRT-code) (see above)
- linear OOA(320, 524290, F32, 2, 0) (dual of [(524290, 2), 1048580, 1]-NRT-code) (see above)
- linear OOA(320, 524290, F32, 2, 0) (dual of [(524290, 2), 1048580, 1]-NRT-code) (see above)
- linear OOA(320, 524290, F32, 2, 0) (dual of [(524290, 2), 1048580, 1]-NRT-code) (see above)
- linear OOA(320, 524290, F32, 2, 0) (dual of [(524290, 2), 1048580, 1]-NRT-code) (see above)
- linear OOA(320, 524290, F32, 2, 0) (dual of [(524290, 2), 1048580, 1]-NRT-code) (see above)
- linear OOA(320, 524290, F32, 2, 0) (dual of [(524290, 2), 1048580, 1]-NRT-code) (see above)
- linear OOA(320, 524290, F32, 2, 0) (dual of [(524290, 2), 1048580, 1]-NRT-code) (see above)
- linear OOA(320, 524290, F32, 2, 0) (dual of [(524290, 2), 1048580, 1]-NRT-code) (see above)
- linear OOA(321, 524290, F32, 2, 1) (dual of [(524290, 2), 1048579, 2]-NRT-code), using
- discarding factors / shortening the dual code based on linear OOA(321, s, F32, 2, 1) with arbitrarily large s, using
- appending 1 arbitrary column [i] based on linear OA(321, s, F32, 1) (dual of [s, s−1, 2]-code) with arbitrarily large s, using
- discarding factors / shortening the dual code based on linear OOA(321, s, F32, 2, 1) with arbitrarily large s, using
- linear OOA(321, 524290, F32, 2, 1) (dual of [(524290, 2), 1048579, 2]-NRT-code) (see above)
- linear OOA(325, 524290, F32, 2, 2) (dual of [(524290, 2), 1048575, 3]-NRT-code), using
- discarding factors / shortening the dual code based on linear OOA(325, 1082401, F32, 2, 2) (dual of [(1082401, 2), 2164797, 3]-NRT-code), using
- appending kth column [i] based on linear OA(325, 1082401, F32, 2) (dual of [1082401, 1082396, 3]-code), using
- Hamming code H(5,32) [i]
- appending kth column [i] based on linear OA(325, 1082401, F32, 2) (dual of [1082401, 1082396, 3]-code), using
- discarding factors / shortening the dual code based on linear OOA(325, 1082401, F32, 2, 2) (dual of [(1082401, 2), 2164797, 3]-NRT-code), using
- linear OOA(3213, 524290, F32, 2, 4) (dual of [(524290, 2), 1048567, 5]-NRT-code), using
- OOA 2-folding [i] based on linear OA(3213, 1048580, F32, 4) (dual of [1048580, 1048567, 5]-code), using
- construction X applied to Ce(3) ⊂ Ce(2) [i] based on
- linear OA(3213, 1048576, F32, 4) (dual of [1048576, 1048563, 5]-code), using an extension Ce(3) of the primitive narrow-sense BCH-code C(I) with length 1048575 = 324−1, defining interval I = [1,3], and designed minimum distance d ≥ |I|+1 = 4 [i]
- linear OA(329, 1048576, F32, 3) (dual of [1048576, 1048567, 4]-code or 1048576-cap in PG(8,32)), using an extension Ce(2) of the primitive narrow-sense BCH-code C(I) with length 1048575 = 324−1, defining interval I = [1,2], and designed minimum distance d ≥ |I|+1 = 3 [i]
- linear OA(320, 4, F32, 0) (dual of [4, 4, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(320, s, F32, 0) (dual of [s, s, 1]-code) with arbitrarily large s, using
- construction X applied to Ce(3) ⊂ Ce(2) [i] based on
- OOA 2-folding [i] based on linear OA(3213, 1048580, F32, 4) (dual of [1048580, 1048567, 5]-code), using
- linear OOA(320, 524290, F32, 2, 0) (dual of [(524290, 2), 1048580, 1]-NRT-code), using
- generalized (u, u+v)-construction [i] based on
- OOA stacking with additional row [i] based on linear OOA(3220, large, F32, 2, 4), using
- net defined by OOA [i] based on linear OOA(3220, 8388602, F32, 6, 4) (dual of [(8388602, 6), 50331592, 5]-NRT-code), using
- (u, u+v)-construction [i] based on
(23−4, 23, large)-Net in Base 32 — Upper bound on s
There is no (19, 23, large)-net in base 32, because
- 2 times m-reduction [i] would yield (19, 21, large)-net in base 32, but