Best Known (87−40, 87, s)-Nets in Base 32
(87−40, 87, 240)-Net over F32 — Constructive and digital
Digital (47, 87, 240)-net over F32, using
- 10 times m-reduction [i] based on digital (47, 97, 240)-net over F32, using
- (u, u+v)-construction [i] based on
- digital (11, 36, 120)-net over F32, using
- net from sequence [i] based on digital (11, 119)-sequence over F32, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F32 with g(F) = 11 and N(F) ≥ 120, using
- net from sequence [i] based on digital (11, 119)-sequence over F32, using
- digital (11, 61, 120)-net over F32, using
- net from sequence [i] based on digital (11, 119)-sequence over F32 (see above)
- digital (11, 36, 120)-net over F32, using
- (u, u+v)-construction [i] based on
(87−40, 87, 513)-Net in Base 32 — Constructive
(47, 87, 513)-net in base 32, using
- t-expansion [i] based on (46, 87, 513)-net in base 32, using
- 21 times m-reduction [i] based on (46, 108, 513)-net in base 32, using
- base change [i] based on digital (28, 90, 513)-net over F64, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- the Hermitian function field over F64 [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
- base change [i] based on digital (28, 90, 513)-net over F64, using
- 21 times m-reduction [i] based on (46, 108, 513)-net in base 32, using
(87−40, 87, 1171)-Net over F32 — Digital
Digital (47, 87, 1171)-net over F32, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(3287, 1171, F32, 40) (dual of [1171, 1084, 41]-code), using
- 131 step Varšamov–Edel lengthening with (ri) = (5, 0, 1, 0, 0, 0, 1, 8 times 0, 1, 18 times 0, 1, 35 times 0, 1, 60 times 0) [i] based on linear OA(3277, 1030, F32, 40) (dual of [1030, 953, 41]-code), using
- construction XX applied to C1 = C([1021,36]), C2 = C([0,37]), C3 = C1 + C2 = C([0,36]), and C∩ = C1 ∩ C2 = C([1021,37]) [i] based on
- linear OA(3274, 1023, F32, 39) (dual of [1023, 949, 40]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−2,−1,…,36}, and designed minimum distance d ≥ |I|+1 = 40 [i]
- linear OA(3272, 1023, F32, 38) (dual of [1023, 951, 39]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,37], and designed minimum distance d ≥ |I|+1 = 39 [i]
- linear OA(3276, 1023, F32, 40) (dual of [1023, 947, 41]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−2,−1,…,37}, and designed minimum distance d ≥ |I|+1 = 41 [i]
- linear OA(3270, 1023, F32, 37) (dual of [1023, 953, 38]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,36], and designed minimum distance d ≥ |I|+1 = 38 [i]
- linear OA(321, 5, F32, 1) (dual of [5, 4, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(321, 32, F32, 1) (dual of [32, 31, 2]-code), using
- Reed–Solomon code RS(31,32) [i]
- discarding factors / shortening the dual code based on linear OA(321, 32, F32, 1) (dual of [32, 31, 2]-code), using
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(320, s, F32, 0) (dual of [s, s, 1]-code) with arbitrarily large s, using
- construction XX applied to C1 = C([1021,36]), C2 = C([0,37]), C3 = C1 + C2 = C([0,36]), and C∩ = C1 ∩ C2 = C([1021,37]) [i] based on
- 131 step Varšamov–Edel lengthening with (ri) = (5, 0, 1, 0, 0, 0, 1, 8 times 0, 1, 18 times 0, 1, 35 times 0, 1, 60 times 0) [i] based on linear OA(3277, 1030, F32, 40) (dual of [1030, 953, 41]-code), using
(87−40, 87, 944805)-Net in Base 32 — Upper bound on s
There is no (47, 87, 944806)-net in base 32, because
- the generalized Rao bound for nets shows that 32m ≥ 88726 914433 210916 087939 339260 609639 820718 893434 894574 651812 955840 533194 411388 180488 304127 072066 676686 954609 865598 269520 391802 140638 > 3287 [i]