Best Known (24−5, 24, s)-Nets in Base 32
(24−5, 24, 4195358)-Net over F32 — Constructive and digital
Digital (19, 24, 4195358)-net over F32, using
- (u, u+v)-construction [i] based on
- digital (1, 3, 1057)-net over F32, using
- digital (16, 21, 4194301)-net over F32, using
- net defined by OOA [i] based on linear OOA(3221, 4194301, F32, 5, 5) (dual of [(4194301, 5), 20971484, 6]-NRT-code), using
- OOA 2-folding and stacking with additional row [i] based on linear OA(3221, large, F32, 5) (dual of [large, large−21, 6]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 33554433 | 3210−1, defining interval I = [0,2], and minimum distance d ≥ |{−2,−1,0,1,2}|+1 = 6 (BCH-bound) [i]
- OOA 2-folding and stacking with additional row [i] based on linear OA(3221, large, F32, 5) (dual of [large, large−21, 6]-code), using
- net defined by OOA [i] based on linear OOA(3221, 4194301, F32, 5, 5) (dual of [(4194301, 5), 20971484, 6]-NRT-code), using
(24−5, 24, large)-Net in Base 32 — Constructive
(19, 24, large)-net in base 32, using
- base change [i] based on digital (15, 20, large)-net over F64, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 131073)-net over F64, using
- s-reduction based on digital (0, 0, s)-net over F64 with arbitrarily large s, using
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 0, 131073)-net over F64 (see above)
- digital (0, 1, 131073)-net over F64, using
- s-reduction based on digital (0, 1, s)-net over F64 with arbitrarily large s, using
- digital (0, 1, 131073)-net over F64 (see above)
- digital (0, 1, 131073)-net over F64 (see above)
- digital (2, 4, 131073)-net over F64, using
- s-reduction based on digital (2, 4, 266305)-net over F64, using
- digital (8, 13, 131073)-net over F64, using
- net defined by OOA [i] based on linear OOA(6413, 131073, F64, 5, 5) (dual of [(131073, 5), 655352, 6]-NRT-code), using
- OOA 2-folding and stacking with additional row [i] based on linear OA(6413, 262147, F64, 5) (dual of [262147, 262134, 6]-code), using
- construction X applied to Ce(4) ⊂ Ce(3) [i] based on
- linear OA(6413, 262144, F64, 5) (dual of [262144, 262131, 6]-code), using an extension Ce(4) of the primitive narrow-sense BCH-code C(I) with length 262143 = 643−1, defining interval I = [1,4], and designed minimum distance d ≥ |I|+1 = 5 [i]
- linear OA(6410, 262144, F64, 4) (dual of [262144, 262134, 5]-code), using an extension Ce(3) of the primitive narrow-sense BCH-code C(I) with length 262143 = 643−1, defining interval I = [1,3], and designed minimum distance d ≥ |I|+1 = 4 [i]
- linear OA(640, 3, F64, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(640, s, F64, 0) (dual of [s, s, 1]-code) with arbitrarily large s, using
- construction X applied to Ce(4) ⊂ Ce(3) [i] based on
- OOA 2-folding and stacking with additional row [i] based on linear OA(6413, 262147, F64, 5) (dual of [262147, 262134, 6]-code), using
- net defined by OOA [i] based on linear OOA(6413, 131073, F64, 5, 5) (dual of [(131073, 5), 655352, 6]-NRT-code), using
- digital (0, 0, 131073)-net over F64, using
- generalized (u, u+v)-construction [i] based on
(24−5, 24, large)-Net over F32 — Digital
Digital (19, 24, large)-net over F32, using
- 323 times duplication [i] based on digital (16, 21, large)-net over F32, using
- embedding of OOA with Gilbert–VarÅ¡amov bound [i] based on linear OA(3221, large, F32, 5) (dual of [large, large−21, 6]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 33554433 | 3210−1, defining interval I = [0,2], and minimum distance d ≥ |{−2,−1,0,1,2}|+1 = 6 (BCH-bound) [i]
- embedding of OOA with Gilbert–VarÅ¡amov bound [i] based on linear OA(3221, large, F32, 5) (dual of [large, large−21, 6]-code), using
(24−5, 24, large)-Net in Base 32 — Upper bound on s
There is no (19, 24, large)-net in base 32, because
- 3 times m-reduction [i] would yield (19, 21, large)-net in base 32, but