Best Known (86−76, 86, s)-Nets in Base 32
(86−76, 86, 104)-Net over F32 — Constructive and digital
Digital (10, 86, 104)-net over F32, using
- t-expansion [i] based on digital (9, 86, 104)-net over F32, using
- net from sequence [i] based on digital (9, 103)-sequence over F32, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F32 with g(F) = 9 and N(F) ≥ 104, using
- net from sequence [i] based on digital (9, 103)-sequence over F32, using
(86−76, 86, 113)-Net over F32 — Digital
Digital (10, 86, 113)-net over F32, using
- net from sequence [i] based on digital (10, 112)-sequence over F32, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F32 with g(F) = 10 and N(F) ≥ 113, using
(86−76, 86, 1212)-Net over F32 — Upper bound on s (digital)
There is no digital (10, 86, 1213)-net over F32, because
- extracting embedded orthogonal array [i] would yield linear OA(3286, 1213, F32, 76) (dual of [1213, 1127, 77]-code), but
- the Johnson bound shows that N ≤ 19627 890277 786812 145153 335881 613668 778216 193446 127252 480423 505442 050970 873557 055856 071518 937035 635536 930860 936740 628884 286746 584429 993481 288956 470912 938822 802353 900281 546965 856034 111888 993512 256273 250694 147307 048624 816476 566064 951072 123358 614524 634233 858014 657240 009924 135965 217094 036765 261873 094107 462809 347728 218090 693241 144442 240321 018588 842384 993120 758742 198385 276073 601988 052590 113192 794538 082627 967707 447997 489967 844674 531741 903761 838313 003711 403224 702257 788916 413981 992268 671207 158042 572186 969728 406079 131577 169009 062623 319851 701677 821110 517218 302981 635135 432006 605668 782972 483074 004770 280406 263598 922753 506095 004672 799878 378334 311960 621585 270940 425717 504913 274752 944693 186501 461920 770160 619651 408641 896915 250263 470605 357116 387107 657845 317171 868053 670865 847819 944867 148403 540969 352316 146392 106434 686463 926430 495026 213841 347974 427909 095523 083990 133399 188797 544761 095802 947520 909892 192158 144370 656929 326563 230559 740251 895270 362049 925164 165714 893643 413304 340368 458509 440354 429027 609745 435761 685421 864630 710895 425970 546258 373193 548411 229152 075568 293011 989677 503840 218858 198093 151998 046245 034647 807262 743947 732543 977127 567707 020323 263984 077131 286750 836474 403099 733157 586894 873089 513959 883974 521400 828560 067173 980246 785340 987156 430003 043908 941768 253978 370342 178831 290684 013280 096103 826730 749204 907970 022245 321308 369054 121574 164555 679648 977059 071125 877503 644937 027653 753857 890108 319630 482517 812221 224625 416938 288888 315316 435821 810740 826442 344287 417615 014020 237060 077273 403112 541023 647346 986134 200900 536831 103764 796975 379872 206258 579960 271544 171446 258727 461441 256389 862108 368233 214693 627593 722101 884885 988555 310481 410114 014943 600801 624757 986157 722293 618917 773225 681870 369077 930525 725135 308055 141052 < 321127 [i]
(86−76, 86, 1215)-Net in Base 32 — Upper bound on s
There is no (10, 86, 1216)-net in base 32, because
- the generalized Rao bound for nets shows that 32m ≥ 2788 457517 517364 690287 917781 539104 413664 585305 490732 729576 662270 752131 654085 747082 911834 990618 546821 518552 918097 088049 149842 920615 > 3286 [i]