Best Known (48, s)-Sequences in Base 32
(48, 119)-Sequence over F32 — Constructive and digital
Digital (48, 119)-sequence over F32, using
- t-expansion [i] based on digital (11, 119)-sequence over F32, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F32 with g(F) = 11 and N(F) ≥ 120, using
(48, 324)-Sequence over F32 — Digital
Digital (48, 324)-sequence over F32, using
- t-expansion [i] based on digital (44, 324)-sequence over F32, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F32 with g(F) = 44 and N(F) ≥ 325, using
(48, 1553)-Sequence in Base 32 — Upper bound on s
There is no (48, 1554)-sequence in base 32, because
- net from sequence [i] would yield (48, m, 1555)-net in base 32 for arbitrarily large m, but
- m-reduction [i] would yield (48, 3107, 1555)-net in base 32, but
- extracting embedded OOA [i] would yield OOA(323107, 1555, S32, 2, 3059), but
- the (dual) Plotkin bound for OOAs shows that M ≥ 58317 710139 741163 266922 803510 337946 587321 284389 609332 789509 436088 333700 220661 006646 965899 477926 918181 653068 553036 389330 246692 358276 918360 561096 064944 980338 511125 260564 791488 858936 470354 190479 999822 853898 749208 977347 746976 746942 803987 099947 580148 343566 954310 694332 876864 415252 747923 198335 226059 072148 932508 368511 248726 289511 563019 171116 803678 564669 112603 573577 216261 683474 831238 681753 547051 243538 247159 154540 944019 065849 254721 895777 497929 482332 116733 944694 736356 854443 501122 804611 656073 752278 409695 739694 116696 667307 271319 745408 312823 368030 412624 672816 065110 380389 823680 693479 248973 042977 778862 517061 917854 531145 069218 894341 087571 497555 102807 081680 407145 634553 993515 331658 187704 522739 106952 994783 663494 397464 971663 454654 087997 759572 720141 540442 188127 160164 365337 495415 598458 212998 086849 529059 521714 535131 300906 279025 296704 656425 999772 518149 718893 204291 092134 504175 030245 720619 417153 747496 239112 407838 240332 237823 752922 501882 147595 865150 846902 138442 093365 025502 940242 507653 853808 625095 468732 169372 208064 764791 986254 437810 954288 482615 871695 465517 813392 505070 399964 902055 949901 266111 141561 373181 950604 119312 260179 735628 589421 529148 550392 250325 016679 332944 204642 198738 688825 122328 706268 377231 427153 273297 376104 050564 192833 968274 522553 924670 420629 396797 186067 631461 067307 136678 746992 017799 374224 599462 609324 402061 140143 557192 355148 792216 225632 290722 467665 923861 511757 347857 046171 013585 288536 155239 823135 118191 760093 384032 409060 045290 154038 877455 959571 069501 744445 541447 009946 630545 639679 275589 868681 052158 904506 093954 645469 902988 667918 789509 637266 196368 721063 131422 605255 216972 091102 567324 569240 809764 254279 263715 885041 761742 550791 522828 155194 886085 108042 330684 595173 990883 848222 501852 590464 948636 970524 232472 448041 301016 095348 138535 816647 004168 834652 619894 528472 289341 403870 582811 466370 886775 057396 561828 605221 758953 096634 505228 586390 105906 132077 204167 690715 351821 626150 263357 447225 942876 943077 652931 573467 900027 512754 354001 719125 612491 693371 787908 316879 718213 419475 188675 014867 580472 322353 442957 501636 527842 221034 290275 364317 769602 965091 575339 595533 577556 166153 009134 721200 852646 700896 696258 455877 051615 434630 364162 093521 043614 241130 112190 452224 612609 613469 051732 460158 442748 663949 587896 478106 092948 781782 417431 258403 349334 060204 479432 162110 062345 407974 256914 529071 106170 360067 381095 937196 800614 549939 386700 539459 064490 562963 310809 527815 757396 986735 115811 046918 008935 422464 030590 779773 084968 145791 060111 301683 809349 369658 705034 180978 120814 444986 072076 494993 193012 639460 973271 242425 406485 326571 759351 599307 843602 161146 178746 428835 113922 991781 106307 198048 300670 754903 034834 343160 095963 849010 046062 881520 677532 524513 735287 570305 466402 636484 718977 086278 057422 869529 097926 459469 545013 521515 746457 267624 560948 217008 218148 764793 761025 862269 453921 400748 873850 354482 185636 760108 513633 733880 772784 810533 325706 950446 035527 118135 504952 051029 143123 330316 746111 548343 577736 614167 346829 212724 041749 209976 482216 261769 627721 142027 964627 284081 470074 190774 317559 595314 019368 917008 277090 115010 529562 667528 155720 301410 744939 326406 823889 778319 016990 662375 461726 432248 403310 199485 481010 171784 855975 127510 962991 094411 709730 341165 325650 763260 756557 240798 457106 209441 477252 139783 647043 421707 601130 106562 828217 234928 907729 640047 388786 889679 588910 493601 047476 731820 064410 676547 754076 996126 270332 855256 411506 253815 479111 304849 856035 606953 117866 737423 945965 080657 943178 668849 727911 210636 961287 103229 963768 443627 915172 274023 495948 542532 545423 968934 050102 859121 547037 778687 099278 794126 769295 205760 679316 237930 551043 913118 093431 156133 745908 218051 798287 749514 042983 940062 708164 959698 782193 045188 321426 675005 192255 690943 804406 139756 039546 100198 098244 913027 135327 692222 940444 250134 629754 400220 464016 270323 461378 863991 043131 708755 647940 349309 333844 775327 594312 319033 486763 569367 810365 048972 505005 861928 305574 038210 719248 911031 274366 012081 887454 483402 290723 955852 649584 015391 973470 194693 746893 540342 161847 017063 202017 182094 373586 724426 419436 536464 062412 600047 237156 798878 845485 596864 273199 785834 854483 299190 564876 538655 877366 783777 022507 708650 859849 909105 221933 478396 972712 315723 213336 937135 675431 715556 746102 511526 093740 834983 949457 858997 725377 734176 635720 801471 255367 920642 274531 564230 385086 491255 590263 401372 002436 776585 023816 497166 098253 143633 539309 131362 300500 775688 773704 212512 023692 063127 194733 389301 244841 823618 146338 849760 859534 343674 235999 239777 309024 560213 865460 333857 532782 172151 402121 202097 996223 246935 945353 304370 437151 665444 871863 867425 802549 515277 881923 051051 089574 957182 003886 905081 008549 716904 050268 301761 981478 342033 546306 182339 643653 260923 408263 862639 884101 356288 454993 394585 311077 820983 864658 824057 438136 782735 628311 001854 603418 936420 713145 853491 109494 490513 821160 442150 026663 219171 297799 531986 419712 / 153 > 323107 [i]
- extracting embedded OOA [i] would yield OOA(323107, 1555, S32, 2, 3059), but
- m-reduction [i] would yield (48, 3107, 1555)-net in base 32, but