Best Known (13, 100, s)-Nets in Base 32
(13, 100, 120)-Net over F32 — Constructive and digital
Digital (13, 100, 120)-net over F32, using
- t-expansion [i] based on digital (11, 100, 120)-net over F32, using
- net from sequence [i] based on digital (11, 119)-sequence over F32, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F32 with g(F) = 11 and N(F) ≥ 120, using
- net from sequence [i] based on digital (11, 119)-sequence over F32, using
(13, 100, 129)-Net over F32 — Digital
Digital (13, 100, 129)-net over F32, using
- t-expansion [i] based on digital (12, 100, 129)-net over F32, using
- net from sequence [i] based on digital (12, 128)-sequence over F32, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F32 with g(F) = 12 and N(F) ≥ 129, using
- net from sequence [i] based on digital (12, 128)-sequence over F32, using
(13, 100, 1565)-Net over F32 — Upper bound on s (digital)
There is no digital (13, 100, 1566)-net over F32, because
- 1 times m-reduction [i] would yield digital (13, 99, 1566)-net over F32, but
- extracting embedded orthogonal array [i] would yield linear OA(3299, 1566, F32, 86) (dual of [1566, 1467, 87]-code), but
- the Johnson bound shows that N ≤ 1 114303 765536 394829 418373 006210 438828 181013 593731 234030 769945 720930 048167 272034 071879 526214 491671 658233 938082 849541 417788 026071 305888 422088 016232 283026 388667 886097 533512 982154 434254 866740 042239 356580 801160 138878 169981 701772 739646 395029 697995 222346 289143 917984 699062 976916 863926 678066 926214 245863 919709 144156 457255 427899 988183 049277 667681 145627 877902 630564 426229 977025 151838 513824 723271 551600 848130 362298 461063 828343 610028 255668 467833 418446 599224 189832 609006 352208 645118 569096 564334 523267 368391 882198 978129 886231 132000 927906 677733 500470 880761 678737 940877 996336 432383 100516 203673 284210 141438 959476 093914 509126 270786 803575 924437 788077 504845 165899 851115 725004 165440 966015 293345 128326 903533 236543 755492 100844 661053 212631 286472 532473 029373 130132 315871 927058 160574 296570 424756 453842 283211 274030 362522 433445 600167 691372 696277 372899 159881 901722 799392 401119 420797 438371 335794 356797 896471 301226 855495 047589 345857 364785 026813 685107 231665 066682 956092 453507 475250 840863 023207 474230 808635 789647 825368 447917 990834 567592 573649 294408 842865 775071 396417 418107 035946 092720 686390 980217 253631 030509 665082 619747 997024 223418 816956 080700 495831 802307 228953 998198 606290 666852 205550 879844 663833 551575 773649 525576 462181 079114 113914 029274 064464 289276 613556 116577 127053 088095 628352 995237 072698 718845 651463 219769 730915 678199 477662 497899 734781 877232 970947 139517 873820 448970 838200 475553 535316 694472 762472 774511 144658 929757 365775 075203 416909 643055 243215 480914 310765 295244 508701 891725 939947 960521 282960 450591 671068 093090 744324 229329 833898 304961 568738 156346 584253 777043 463612 501912 390090 177415 602089 721199 556689 684280 333015 207256 030475 421738 371560 457619 033020 227860 360806 082033 131940 709684 621762 799342 405541 694041 443587 111419 309410 580363 170749 120977 772587 716054 245603 050051 182685 233206 742390 953974 778771 560989 948567 664005 893063 376410 793813 174380 431858 422223 261592 822861 285679 428964 601807 287185 336408 623853 354049 701976 176956 925945 588522 537328 814196 425473 239704 146928 761096 571409 957085 834919 039414 908075 223058 724957 952711 184724 083078 103827 617474 936134 833412 931084 602633 542272 838931 050197 753894 106694 362900 065357 108453 737107 118593 204605 801254 061186 021092 432058 216675 763016 831651 289304 015797 115215 099298 418699 387221 566735 195975 444307 789090 781761 151445 < 321467 [i]
- extracting embedded orthogonal array [i] would yield linear OA(3299, 1566, F32, 86) (dual of [1566, 1467, 87]-code), but
(13, 100, 1567)-Net in Base 32 — Upper bound on s
There is no (13, 100, 1568)-net in base 32, because
- 1 times m-reduction [i] would yield (13, 99, 1568)-net in base 32, but
- the generalized Rao bound for nets shows that 32m ≥ 102621 858501 169421 158771 778180 454819 051610 087176 524243 461829 382089 071879 848049 559156 418359 986897 219804 909804 063823 288002 105981 668399 065345 316929 777136 > 3299 [i]