Best Known (30, 36, s)-Nets in Base 32
(30, 36, large)-Net over F32 — Constructive and digital
Digital (30, 36, large)-net over F32, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 349526)-net over F32, using
- s-reduction based on digital (0, 0, s)-net over F32 with arbitrarily large s, using
- digital (0, 0, 349526)-net over F32 (see above)
- digital (0, 0, 349526)-net over F32 (see above)
- digital (0, 0, 349526)-net over F32 (see above)
- digital (0, 0, 349526)-net over F32 (see above)
- digital (0, 0, 349526)-net over F32 (see above)
- digital (0, 0, 349526)-net over F32 (see above)
- digital (0, 0, 349526)-net over F32 (see above)
- digital (0, 0, 349526)-net over F32 (see above)
- digital (0, 0, 349526)-net over F32 (see above)
- digital (0, 0, 349526)-net over F32 (see above)
- digital (0, 0, 349526)-net over F32 (see above)
- digital (0, 0, 349526)-net over F32 (see above)
- digital (0, 0, 349526)-net over F32 (see above)
- digital (0, 0, 349526)-net over F32 (see above)
- digital (0, 0, 349526)-net over F32 (see above)
- digital (0, 0, 349526)-net over F32 (see above)
- digital (0, 0, 349526)-net over F32 (see above)
- digital (0, 0, 349526)-net over F32 (see above)
- digital (0, 0, 349526)-net over F32 (see above)
- digital (0, 0, 349526)-net over F32 (see above)
- digital (0, 0, 349526)-net over F32 (see above)
- digital (0, 0, 349526)-net over F32 (see above)
- digital (0, 0, 349526)-net over F32 (see above)
- digital (0, 0, 349526)-net over F32 (see above)
- digital (0, 0, 349526)-net over F32 (see above)
- digital (0, 1, 349526)-net over F32, using
- s-reduction based on digital (0, 1, s)-net over F32 with arbitrarily large s, using
- digital (0, 1, 349526)-net over F32 (see above)
- digital (0, 1, 349526)-net over F32 (see above)
- digital (3, 5, 349526)-net over F32, using
- s-reduction based on digital (3, 5, 1082401)-net over F32, using
- digital (4, 7, 349526)-net over F32, using
- s-reduction based on digital (4, 7, 1050624)-net over F32, using
- net defined by OOA [i] based on linear OOA(327, 1050624, F32, 3, 3) (dual of [(1050624, 3), 3151865, 4]-NRT-code), using
- appending kth column [i] based on linear OOA(327, 1050624, F32, 2, 3) (dual of [(1050624, 2), 2101241, 4]-NRT-code), using
- net defined by OOA [i] based on linear OOA(327, 1050624, F32, 3, 3) (dual of [(1050624, 3), 3151865, 4]-NRT-code), using
- s-reduction based on digital (4, 7, 1050624)-net over F32, using
- digital (15, 21, 349526)-net over F32, using
- net defined by OOA [i] based on linear OOA(3221, 349526, F32, 6, 6) (dual of [(349526, 6), 2097135, 7]-NRT-code), using
- OA 3-folding and stacking [i] based on linear OA(3221, 1048578, F32, 6) (dual of [1048578, 1048557, 7]-code), using
- discarding factors / shortening the dual code based on linear OA(3221, 1048580, F32, 6) (dual of [1048580, 1048559, 7]-code), using
- construction X applied to Ce(5) ⊂ Ce(4) [i] based on
- linear OA(3221, 1048576, F32, 6) (dual of [1048576, 1048555, 7]-code), using an extension Ce(5) of the primitive narrow-sense BCH-code C(I) with length 1048575 = 324−1, defining interval I = [1,5], and designed minimum distance d ≥ |I|+1 = 6 [i]
- linear OA(3217, 1048576, F32, 5) (dual of [1048576, 1048559, 6]-code), using an extension Ce(4) of the primitive narrow-sense BCH-code C(I) with length 1048575 = 324−1, defining interval I = [1,4], and designed minimum distance d ≥ |I|+1 = 5 [i]
- linear OA(320, 4, F32, 0) (dual of [4, 4, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(320, s, F32, 0) (dual of [s, s, 1]-code) with arbitrarily large s, using
- construction X applied to Ce(5) ⊂ Ce(4) [i] based on
- discarding factors / shortening the dual code based on linear OA(3221, 1048580, F32, 6) (dual of [1048580, 1048559, 7]-code), using
- OA 3-folding and stacking [i] based on linear OA(3221, 1048578, F32, 6) (dual of [1048578, 1048557, 7]-code), using
- net defined by OOA [i] based on linear OOA(3221, 349526, F32, 6, 6) (dual of [(349526, 6), 2097135, 7]-NRT-code), using
- digital (0, 0, 349526)-net over F32, using
(30, 36, large)-Net in Base 32 — Upper bound on s
There is no (30, 36, large)-net in base 32, because
- 4 times m-reduction [i] would yield (30, 32, large)-net in base 32, but