Best Known (48, 57, s)-Nets in Base 32
(48, 57, 4194300)-Net over F32 — Constructive and digital
Digital (48, 57, 4194300)-net over F32, using
- net defined by OOA [i] based on linear OOA(3257, 4194300, F32, 10, 9) (dual of [(4194300, 10), 41942943, 10]-NRT-code), using
- OOA 2-folding and stacking with additional row [i] based on linear OOA(3257, 8388601, F32, 2, 9) (dual of [(8388601, 2), 16777145, 10]-NRT-code), using
- discarding factors / shortening the dual code based on linear OOA(3257, 8388602, F32, 2, 9) (dual of [(8388602, 2), 16777147, 10]-NRT-code), using
- (u, u+v)-construction [i] based on
- linear OOA(3216, 4194301, F32, 2, 4) (dual of [(4194301, 2), 8388586, 5]-NRT-code), using
- OOA 2-folding [i] based on linear OA(3216, 8388602, F32, 4) (dual of [8388602, 8388586, 5]-code), using
- discarding factors / shortening the dual code based on linear OA(3216, large, F32, 4) (dual of [large, large−16, 5]-code), using
- the primitive expurgated narrow-sense BCH-code C(I) with length 33554431 = 325−1, defining interval I = [0,3], and designed minimum distance d ≥ |I|+1 = 5 [i]
- discarding factors / shortening the dual code based on linear OA(3216, large, F32, 4) (dual of [large, large−16, 5]-code), using
- OOA 2-folding [i] based on linear OA(3216, 8388602, F32, 4) (dual of [8388602, 8388586, 5]-code), using
- linear OOA(3241, 4194301, F32, 2, 9) (dual of [(4194301, 2), 8388561, 10]-NRT-code), using
- OOA 2-folding [i] based on linear OA(3241, 8388602, F32, 9) (dual of [8388602, 8388561, 10]-code), using
- discarding factors / shortening the dual code based on linear OA(3241, large, F32, 9) (dual of [large, large−41, 10]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 33554433 | 3210−1, defining interval I = [0,4], and minimum distance d ≥ |{−4,−3,…,4}|+1 = 10 (BCH-bound) [i]
- discarding factors / shortening the dual code based on linear OA(3241, large, F32, 9) (dual of [large, large−41, 10]-code), using
- OOA 2-folding [i] based on linear OA(3241, 8388602, F32, 9) (dual of [8388602, 8388561, 10]-code), using
- linear OOA(3216, 4194301, F32, 2, 4) (dual of [(4194301, 2), 8388586, 5]-NRT-code), using
- (u, u+v)-construction [i] based on
- discarding factors / shortening the dual code based on linear OOA(3257, 8388602, F32, 2, 9) (dual of [(8388602, 2), 16777147, 10]-NRT-code), using
- OOA 2-folding and stacking with additional row [i] based on linear OOA(3257, 8388601, F32, 2, 9) (dual of [(8388601, 2), 16777145, 10]-NRT-code), using
(48, 57, 4194304)-Net in Base 32 — Constructive
(48, 57, 4194304)-net in base 32, using
- 321 times duplication [i] based on (47, 56, 4194304)-net in base 32, using
- base change [i] based on digital (26, 35, 4194304)-net over F256, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 16384)-net over F256, using
- s-reduction based on digital (0, 0, s)-net over F256 with arbitrarily large s, using
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 1, 16384)-net over F256, using
- s-reduction based on digital (0, 1, s)-net over F256 with arbitrarily large s, using
- digital (0, 1, 16384)-net over F256 (see above)
- digital (0, 1, 16384)-net over F256 (see above)
- digital (0, 1, 16384)-net over F256 (see above)
- digital (0, 1, 16384)-net over F256 (see above)
- digital (1, 3, 16384)-net over F256, using
- s-reduction based on digital (1, 3, 65793)-net over F256, using
- digital (1, 4, 16384)-net over F256, using
- s-reduction based on digital (1, 4, 65537)-net over F256, using
- net defined by OOA [i] based on linear OOA(2564, 65537, F256, 3, 3) (dual of [(65537, 3), 196607, 4]-NRT-code), using
- appending kth column [i] based on linear OOA(2564, 65537, F256, 2, 3) (dual of [(65537, 2), 131070, 4]-NRT-code), using
- net defined by OOA [i] based on linear OOA(2564, 65537, F256, 3, 3) (dual of [(65537, 3), 196607, 4]-NRT-code), using
- s-reduction based on digital (1, 4, 65537)-net over F256, using
- digital (2, 6, 16384)-net over F256, using
- s-reduction based on digital (2, 6, 32640)-net over F256, using
- net defined by OOA [i] based on linear OOA(2566, 32640, F256, 4, 4) (dual of [(32640, 4), 130554, 5]-NRT-code), using
- OA 2-folding and stacking [i] based on linear OA(2566, 65280, F256, 4) (dual of [65280, 65274, 5]-code), using
- 1 times truncation [i] based on linear OA(2567, 65281, F256, 5) (dual of [65281, 65274, 6]-code), using
- OA 2-folding and stacking [i] based on linear OA(2566, 65280, F256, 4) (dual of [65280, 65274, 5]-code), using
- net defined by OOA [i] based on linear OOA(2566, 32640, F256, 4, 4) (dual of [(32640, 4), 130554, 5]-NRT-code), using
- s-reduction based on digital (2, 6, 32640)-net over F256, using
- digital (8, 17, 16384)-net over F256, using
- net defined by OOA [i] based on linear OOA(25617, 16384, F256, 9, 9) (dual of [(16384, 9), 147439, 10]-NRT-code), using
- OOA 4-folding and stacking with additional row [i] based on linear OA(25617, 65537, F256, 9) (dual of [65537, 65520, 10]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 65537 | 2564−1, defining interval I = [0,4], and minimum distance d ≥ |{−4,−3,…,4}|+1 = 10 (BCH-bound) [i]
- OOA 4-folding and stacking with additional row [i] based on linear OA(25617, 65537, F256, 9) (dual of [65537, 65520, 10]-code), using
- net defined by OOA [i] based on linear OOA(25617, 16384, F256, 9, 9) (dual of [(16384, 9), 147439, 10]-NRT-code), using
- digital (0, 0, 16384)-net over F256, using
- generalized (u, u+v)-construction [i] based on
- base change [i] based on digital (26, 35, 4194304)-net over F256, using
(48, 57, large)-Net over F32 — Digital
Digital (48, 57, large)-net over F32, using
- 4 times m-reduction [i] based on digital (48, 61, large)-net over F32, using
- embedding of OOA with Gilbert–VarÅ¡amov bound [i] based on linear OA(3261, large, F32, 13) (dual of [large, large−61, 14]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 33554433 | 3210−1, defining interval I = [0,6], and minimum distance d ≥ |{−6,−5,…,6}|+1 = 14 (BCH-bound) [i]
- embedding of OOA with Gilbert–VarÅ¡amov bound [i] based on linear OA(3261, large, F32, 13) (dual of [large, large−61, 14]-code), using
(48, 57, large)-Net in Base 32 — Upper bound on s
There is no (48, 57, large)-net in base 32, because
- 7 times m-reduction [i] would yield (48, 50, large)-net in base 32, but