Best Known (35, s)-Sequences in Base 32
(35, 119)-Sequence over F32 — Constructive and digital
Digital (35, 119)-sequence over F32, using
- t-expansion [i] based on digital (11, 119)-sequence over F32, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F32 with g(F) = 11 and N(F) ≥ 120, using
(35, 272)-Sequence over F32 — Digital
Digital (35, 272)-sequence over F32, using
- t-expansion [i] based on digital (30, 272)-sequence over F32, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F32 with g(F) = 30 and N(F) ≥ 273, using
(35, 1149)-Sequence in Base 32 — Upper bound on s
There is no (35, 1150)-sequence in base 32, because
- net from sequence [i] would yield (35, m, 1151)-net in base 32 for arbitrarily large m, but
- m-reduction [i] would yield (35, 2299, 1151)-net in base 32, but
- extracting embedded OOA [i] would yield OOA(322299, 1151, S32, 2, 2264), but
- the (dual) Plotkin bound for OOAs shows that M ≥ 13 295471 295580 574719 336745 854701 100928 003178 515820 989257 992810 183633 444536 293326 138284 439630 426949 829872 744783 539938 267480 405879 181155 285951 244499 547960 063100 063991 994038 939223 390802 394324 965569 598594 141323 644717 179955 484841 899850 726001 892703 723206 899798 988115 947311 412295 003350 512848 523052 676182 785337 727609 625698 583192 309000 867631 401070 432410 144467 795326 035138 924477 282861 591641 331806 764639 404076 736165 160402 593430 569836 566076 126231 427365 990892 601778 424011 967842 137604 565545 613705 045534 773750 030456 453743 092539 142443 865890 925477 992591 526741 695761 585365 610914 296957 753456 540680 613525 472866 311295 184058 133242 232121 733320 573866 976829 368547 285716 448212 263724 134679 673692 158661 249577 190981 546057 954592 733899 632172 086756 091884 088333 165718 884305 739064 329021 592015 768000 855970 140387 560753 746172 953404 239706 014394 992307 954155 052131 909311 394802 150876 517408 499844 459527 903851 380119 949494 470114 517787 404807 489414 913202 959049 886142 656878 355118 361835 731102 792434 743686 682405 016478 070340 576442 573399 105855 041759 502517 860835 798797 669578 185031 788669 163127 219406 953680 658218 745635 180305 985102 780476 866087 679567 361876 274990 485828 295059 330380 117535 565813 323547 846242 699210 225250 689676 846247 511663 866608 196037 540325 623691 596396 238841 900590 422187 821913 743422 807733 647344 676458 295007 197224 506371 337044 997108 912563 781402 639538 537446 252958 687550 369044 407006 457860 369465 584657 376674 578038 063863 712068 683242 704741 466383 832739 869356 602211 324133 397479 165318 120819 337376 218937 043817 092868 488772 985400 599336 446447 419151 153256 770718 439711 807576 112249 925279 171885 210639 596054 711770 311080 542246 996226 288716 278520 994365 595363 422107 544484 601382 507984 579648 418160 530102 104675 811576 773575 426297 851689 544175 210486 161420 667769 030518 876209 093502 858784 033352 402972 703700 545742 729783 738309 327791 598777 427024 629138 213415 699590 004881 142407 032404 564834 085610 721365 719333 887813 883175 079377 528979 928713 415663 390613 534206 611596 106918 550295 017893 526790 185595 055477 849075 819706 617590 747290 489091 208776 037127 876549 306470 063639 766833 085038 671314 518018 415968 579187 586825 464339 105359 655919 449168 878683 470053 743742 054206 171491 486829 162069 010919 576096 774280 368018 408160 286545 101374 892854 355750 288458 301553 513546 929467 538710 965036 215466 673928 586592 430406 264121 703122 242372 309509 602947 336950 787707 617887 299558 868373 707525 880161 241155 960393 918187 702548 475864 361160 633110 223282 774464 030041 323992 732346 554483 047650 630533 846250 891337 552423 626577 340763 929586 355166 114657 741862 393939 259501 597710 098985 480846 300134 018977 288168 804253 324272 083725 068643 005193 884201 690004 278687 611819 471674 374555 550342 617943 342071 262139 765491 656376 190798 427912 770652 259572 594347 484750 135110 479575 500591 627160 563266 079070 976357 985819 898769 361313 824379 669433 463055 327770 929010 725516 069902 150698 676043 184322 918285 029960 899836 468066 278665 161024 038608 326282 753068 544059 999523 434168 602945 894774 259482 202821 818667 897572 821671 131315 979781 643847 446813 948059 670671 270439 292465 392127 404603 029536 664127 896441 898930 596237 562041 544447 788395 257531 104018 143246 722895 012911 908382 957153 895669 650322 392884 440369 819452 925100 215633 605288 163474 167057 636626 434964 575051 959656 857689 133609 171929 849254 662614 320116 604428 652784 416873 871976 666412 957256 560511 374324 880242 830594 830236 317420 139650 552979 007943 033952 161082 662290 949157 923936 272398 619952 257938 740351 253065 067750 612438 200877 729777 185503 136936 853463 718607 254924 723962 437439 722243 923584 063508 103615 991381 550197 984692 169114 903506 079024 339827 705462 612352 156149 311573 273329 367724 036342 419145 621850 605743 773478 712344 838144 / 453 > 322299 [i]
- extracting embedded OOA [i] would yield OOA(322299, 1151, S32, 2, 2264), but
- m-reduction [i] would yield (35, 2299, 1151)-net in base 32, but