Best Known (253−122, 253, s)-Nets in Base 4
(253−122, 253, 130)-Net over F4 — Constructive and digital
Digital (131, 253, 130)-net over F4, using
- t-expansion [i] based on digital (105, 253, 130)-net over F4, using
- net from sequence [i] based on digital (105, 129)-sequence over F4, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F4 with g(F) = 105 and N(F) ≥ 130, using
- T7 from the second tower of function fields by GarcÃa and Stichtenoth over F4 [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F4 with g(F) = 105 and N(F) ≥ 130, using
- net from sequence [i] based on digital (105, 129)-sequence over F4, using
(253−122, 253, 198)-Net over F4 — Digital
Digital (131, 253, 198)-net over F4, using
(253−122, 253, 2417)-Net in Base 4 — Upper bound on s
There is no (131, 253, 2418)-net in base 4, because
- the generalized Rao bound for nets shows that 4m ≥ 214 466148 971008 997761 300035 756269 890584 802378 642774 301494 153426 142652 523633 764081 158555 617184 645233 119104 422643 959220 671987 501034 652883 055663 180209 721200 > 4253 [i]