Best Known (57, 57+25, s)-Nets in Base 4
(57, 57+25, 240)-Net over F4 — Constructive and digital
Digital (57, 82, 240)-net over F4, using
- 2 times m-reduction [i] based on digital (57, 84, 240)-net over F4, using
- trace code for nets [i] based on digital (1, 28, 80)-net over F64, using
- net from sequence [i] based on digital (1, 79)-sequence over F64, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 1 and N(F) ≥ 80, using
- net from sequence [i] based on digital (1, 79)-sequence over F64, using
- trace code for nets [i] based on digital (1, 28, 80)-net over F64, using
(57, 57+25, 385)-Net over F4 — Digital
Digital (57, 82, 385)-net over F4, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(482, 385, F4, 25) (dual of [385, 303, 26]-code), using
- 302 step Varšamov–Edel lengthening with (ri) = (7, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 15 times 0, 1, 15 times 0, 1, 17 times 0, 1, 18 times 0, 1, 19 times 0) [i] based on linear OA(425, 26, F4, 25) (dual of [26, 1, 26]-code or 26-arc in PG(24,4)), using
- dual of repetition code with length 26 [i]
- 302 step Varšamov–Edel lengthening with (ri) = (7, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 15 times 0, 1, 15 times 0, 1, 17 times 0, 1, 18 times 0, 1, 19 times 0) [i] based on linear OA(425, 26, F4, 25) (dual of [26, 1, 26]-code or 26-arc in PG(24,4)), using
(57, 57+25, 20414)-Net in Base 4 — Upper bound on s
There is no (57, 82, 20415)-net in base 4, because
- 1 times m-reduction [i] would yield (57, 81, 20415)-net in base 4, but
- the generalized Rao bound for nets shows that 4m ≥ 5 847023 715318 513843 081408 362056 794254 351128 302373 > 481 [i]