Best Known (117−27, 117, s)-Nets in Base 4
(117−27, 117, 1036)-Net over F4 — Constructive and digital
Digital (90, 117, 1036)-net over F4, using
- 41 times duplication [i] based on digital (89, 116, 1036)-net over F4, using
- trace code for nets [i] based on digital (2, 29, 259)-net over F256, using
- net from sequence [i] based on digital (2, 258)-sequence over F256, using
- trace code for nets [i] based on digital (2, 29, 259)-net over F256, using
(117−27, 117, 1814)-Net over F4 — Digital
Digital (90, 117, 1814)-net over F4, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(4117, 1814, F4, 27) (dual of [1814, 1697, 28]-code), using
- 1696 step Varšamov–Edel lengthening with (ri) = (7, 4, 2, 2, 1, 2, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 15 times 0, 1, 16 times 0, 1, 17 times 0, 1, 18 times 0, 1, 19 times 0, 1, 20 times 0, 1, 21 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 27 times 0, 1, 29 times 0, 1, 30 times 0, 1, 32 times 0, 1, 34 times 0, 1, 35 times 0, 1, 38 times 0, 1, 40 times 0, 1, 42 times 0, 1, 45 times 0, 1, 47 times 0, 1, 50 times 0, 1, 53 times 0, 1, 56 times 0, 1, 59 times 0, 1, 63 times 0, 1, 66 times 0, 1, 69 times 0, 1, 74 times 0, 1, 77 times 0, 1, 82 times 0, 1, 87 times 0, 1, 92 times 0) [i] based on linear OA(427, 28, F4, 27) (dual of [28, 1, 28]-code or 28-arc in PG(26,4)), using
- dual of repetition code with length 28 [i]
- 1696 step Varšamov–Edel lengthening with (ri) = (7, 4, 2, 2, 1, 2, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 15 times 0, 1, 16 times 0, 1, 17 times 0, 1, 18 times 0, 1, 19 times 0, 1, 20 times 0, 1, 21 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 27 times 0, 1, 29 times 0, 1, 30 times 0, 1, 32 times 0, 1, 34 times 0, 1, 35 times 0, 1, 38 times 0, 1, 40 times 0, 1, 42 times 0, 1, 45 times 0, 1, 47 times 0, 1, 50 times 0, 1, 53 times 0, 1, 56 times 0, 1, 59 times 0, 1, 63 times 0, 1, 66 times 0, 1, 69 times 0, 1, 74 times 0, 1, 77 times 0, 1, 82 times 0, 1, 87 times 0, 1, 92 times 0) [i] based on linear OA(427, 28, F4, 27) (dual of [28, 1, 28]-code or 28-arc in PG(26,4)), using
(117−27, 117, 445145)-Net in Base 4 — Upper bound on s
There is no (90, 117, 445146)-net in base 4, because
- 1 times m-reduction [i] would yield (90, 116, 445146)-net in base 4, but
- the generalized Rao bound for nets shows that 4m ≥ 6901 750080 711946 696170 100760 072893 951034 715174 076320 809498 000529 027844 > 4116 [i]