Best Known (103, 103+31, s)-Nets in Base 4
(103, 103+31, 1036)-Net over F4 — Constructive and digital
Digital (103, 134, 1036)-net over F4, using
- 42 times duplication [i] based on digital (101, 132, 1036)-net over F4, using
- trace code for nets [i] based on digital (2, 33, 259)-net over F256, using
- net from sequence [i] based on digital (2, 258)-sequence over F256, using
- trace code for nets [i] based on digital (2, 33, 259)-net over F256, using
(103, 103+31, 1978)-Net over F4 — Digital
Digital (103, 134, 1978)-net over F4, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(4134, 1978, F4, 31) (dual of [1978, 1844, 32]-code), using
- 1843 step Varšamov–Edel lengthening with (ri) = (9, 4, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 19 times 0, 1, 20 times 0, 1, 22 times 0, 1, 22 times 0, 1, 24 times 0, 1, 24 times 0, 1, 26 times 0, 1, 27 times 0, 1, 29 times 0, 1, 30 times 0, 1, 32 times 0, 1, 33 times 0, 1, 35 times 0, 1, 36 times 0, 1, 39 times 0, 1, 40 times 0, 1, 42 times 0, 1, 45 times 0, 1, 46 times 0, 1, 49 times 0, 1, 51 times 0, 1, 54 times 0, 1, 57 times 0, 1, 59 times 0, 1, 62 times 0, 1, 65 times 0, 1, 69 times 0, 1, 71 times 0, 1, 75 times 0, 1, 79 times 0, 1, 83 times 0, 1, 87 times 0) [i] based on linear OA(431, 32, F4, 31) (dual of [32, 1, 32]-code or 32-arc in PG(30,4)), using
- dual of repetition code with length 32 [i]
- 1843 step Varšamov–Edel lengthening with (ri) = (9, 4, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 19 times 0, 1, 20 times 0, 1, 22 times 0, 1, 22 times 0, 1, 24 times 0, 1, 24 times 0, 1, 26 times 0, 1, 27 times 0, 1, 29 times 0, 1, 30 times 0, 1, 32 times 0, 1, 33 times 0, 1, 35 times 0, 1, 36 times 0, 1, 39 times 0, 1, 40 times 0, 1, 42 times 0, 1, 45 times 0, 1, 46 times 0, 1, 49 times 0, 1, 51 times 0, 1, 54 times 0, 1, 57 times 0, 1, 59 times 0, 1, 62 times 0, 1, 65 times 0, 1, 69 times 0, 1, 71 times 0, 1, 75 times 0, 1, 79 times 0, 1, 83 times 0, 1, 87 times 0) [i] based on linear OA(431, 32, F4, 31) (dual of [32, 1, 32]-code or 32-arc in PG(30,4)), using
(103, 103+31, 466551)-Net in Base 4 — Upper bound on s
There is no (103, 134, 466552)-net in base 4, because
- 1 times m-reduction [i] would yield (103, 133, 466552)-net in base 4, but
- the generalized Rao bound for nets shows that 4m ≥ 118 573487 316378 265752 739760 388800 424688 703631 251522 678946 711840 800051 683611 034234 > 4133 [i]