Best Known (97, 97+32, s)-Nets in Base 4
(97, 97+32, 1028)-Net over F4 — Constructive and digital
Digital (97, 129, 1028)-net over F4, using
- 41 times duplication [i] based on digital (96, 128, 1028)-net over F4, using
- trace code for nets [i] based on digital (0, 32, 257)-net over F256, using
- net from sequence [i] based on digital (0, 256)-sequence over F256, using
- generalized Faure sequence [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F256 with g(F) = 0 and N(F) ≥ 257, using
- the rational function field F256(x) [i]
- Niederreiter sequence [i]
- net from sequence [i] based on digital (0, 256)-sequence over F256, using
- trace code for nets [i] based on digital (0, 32, 257)-net over F256, using
(97, 97+32, 1341)-Net over F4 — Digital
Digital (97, 129, 1341)-net over F4, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(4129, 1341, F4, 32) (dual of [1341, 1212, 33]-code), using
- 1211 step Varšamov–Edel lengthening with (ri) = (9, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 16 times 0, 1, 16 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 20 times 0, 1, 21 times 0, 1, 21 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 26 times 0, 1, 28 times 0, 1, 29 times 0, 1, 30 times 0, 1, 32 times 0, 1, 34 times 0, 1, 35 times 0, 1, 37 times 0, 1, 38 times 0, 1, 40 times 0, 1, 43 times 0, 1, 44 times 0, 1, 46 times 0, 1, 49 times 0, 1, 51 times 0, 1, 54 times 0, 1, 56 times 0) [i] based on linear OA(432, 33, F4, 32) (dual of [33, 1, 33]-code or 33-arc in PG(31,4)), using
- dual of repetition code with length 33 [i]
- 1211 step Varšamov–Edel lengthening with (ri) = (9, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 16 times 0, 1, 16 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 20 times 0, 1, 21 times 0, 1, 21 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 26 times 0, 1, 28 times 0, 1, 29 times 0, 1, 30 times 0, 1, 32 times 0, 1, 34 times 0, 1, 35 times 0, 1, 37 times 0, 1, 38 times 0, 1, 40 times 0, 1, 43 times 0, 1, 44 times 0, 1, 46 times 0, 1, 49 times 0, 1, 51 times 0, 1, 54 times 0, 1, 56 times 0) [i] based on linear OA(432, 33, F4, 32) (dual of [33, 1, 33]-code or 33-arc in PG(31,4)), using
(97, 97+32, 161991)-Net in Base 4 — Upper bound on s
There is no (97, 129, 161992)-net in base 4, because
- the generalized Rao bound for nets shows that 4m ≥ 463199 425342 456918 771192 303598 797148 422342 343412 542762 657102 588170 040559 399844 > 4129 [i]