Best Known (164−38, 164, s)-Nets in Base 4
(164−38, 164, 1040)-Net over F4 — Constructive and digital
Digital (126, 164, 1040)-net over F4, using
- trace code for nets [i] based on digital (3, 41, 260)-net over F256, using
- net from sequence [i] based on digital (3, 259)-sequence over F256, using
(164−38, 164, 2296)-Net over F4 — Digital
Digital (126, 164, 2296)-net over F4, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(4164, 2296, F4, 38) (dual of [2296, 2132, 39]-code), using
- 2131 step Varšamov–Edel lengthening with (ri) = (11, 5, 3, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 20 times 0, 1, 20 times 0, 1, 21 times 0, 1, 23 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 27 times 0, 1, 27 times 0, 1, 28 times 0, 1, 30 times 0, 1, 31 times 0, 1, 32 times 0, 1, 33 times 0, 1, 35 times 0, 1, 36 times 0, 1, 38 times 0, 1, 39 times 0, 1, 41 times 0, 1, 42 times 0, 1, 44 times 0, 1, 46 times 0, 1, 47 times 0, 1, 49 times 0, 1, 52 times 0, 1, 53 times 0, 1, 56 times 0, 1, 58 times 0, 1, 60 times 0, 1, 62 times 0, 1, 65 times 0, 1, 67 times 0, 1, 70 times 0, 1, 73 times 0, 1, 76 times 0, 1, 79 times 0, 1, 82 times 0) [i] based on linear OA(438, 39, F4, 38) (dual of [39, 1, 39]-code or 39-arc in PG(37,4)), using
- dual of repetition code with length 39 [i]
- 2131 step Varšamov–Edel lengthening with (ri) = (11, 5, 3, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 20 times 0, 1, 20 times 0, 1, 21 times 0, 1, 23 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 27 times 0, 1, 27 times 0, 1, 28 times 0, 1, 30 times 0, 1, 31 times 0, 1, 32 times 0, 1, 33 times 0, 1, 35 times 0, 1, 36 times 0, 1, 38 times 0, 1, 39 times 0, 1, 41 times 0, 1, 42 times 0, 1, 44 times 0, 1, 46 times 0, 1, 47 times 0, 1, 49 times 0, 1, 52 times 0, 1, 53 times 0, 1, 56 times 0, 1, 58 times 0, 1, 60 times 0, 1, 62 times 0, 1, 65 times 0, 1, 67 times 0, 1, 70 times 0, 1, 73 times 0, 1, 76 times 0, 1, 79 times 0, 1, 82 times 0) [i] based on linear OA(438, 39, F4, 38) (dual of [39, 1, 39]-code or 39-arc in PG(37,4)), using
(164−38, 164, 415725)-Net in Base 4 — Upper bound on s
There is no (126, 164, 415726)-net in base 4, because
- the generalized Rao bound for nets shows that 4m ≥ 546 827189 636816 643193 672823 373391 088813 019288 927912 652221 855737 528609 054594 828295 002914 508820 799324 > 4164 [i]