Best Known (199−42, 199, s)-Nets in Base 4
(199−42, 199, 1056)-Net over F4 — Constructive and digital
Digital (157, 199, 1056)-net over F4, using
- 1 times m-reduction [i] based on digital (157, 200, 1056)-net over F4, using
- trace code for nets [i] based on digital (7, 50, 264)-net over F256, using
- net from sequence [i] based on digital (7, 263)-sequence over F256, using
- trace code for nets [i] based on digital (7, 50, 264)-net over F256, using
(199−42, 199, 4541)-Net over F4 — Digital
Digital (157, 199, 4541)-net over F4, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(4199, 4541, F4, 42) (dual of [4541, 4342, 43]-code), using
- 427 step Varšamov–Edel lengthening with (ri) = (3, 1, 0, 0, 1, 5 times 0, 1, 11 times 0, 1, 19 times 0, 1, 33 times 0, 1, 52 times 0, 1, 74 times 0, 1, 99 times 0, 1, 122 times 0) [i] based on linear OA(4187, 4102, F4, 42) (dual of [4102, 3915, 43]-code), using
- construction X applied to Ce(41) ⊂ Ce(40) [i] based on
- linear OA(4187, 4096, F4, 42) (dual of [4096, 3909, 43]-code), using an extension Ce(41) of the primitive narrow-sense BCH-code C(I) with length 4095 = 46−1, defining interval I = [1,41], and designed minimum distance d ≥ |I|+1 = 42 [i]
- linear OA(4181, 4096, F4, 41) (dual of [4096, 3915, 42]-code), using an extension Ce(40) of the primitive narrow-sense BCH-code C(I) with length 4095 = 46−1, defining interval I = [1,40], and designed minimum distance d ≥ |I|+1 = 41 [i]
- linear OA(40, 6, F4, 0) (dual of [6, 6, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(40, s, F4, 0) (dual of [s, s, 1]-code) with arbitrarily large s, using
- construction X applied to Ce(41) ⊂ Ce(40) [i] based on
- 427 step Varšamov–Edel lengthening with (ri) = (3, 1, 0, 0, 1, 5 times 0, 1, 11 times 0, 1, 19 times 0, 1, 33 times 0, 1, 52 times 0, 1, 74 times 0, 1, 99 times 0, 1, 122 times 0) [i] based on linear OA(4187, 4102, F4, 42) (dual of [4102, 3915, 43]-code), using
(199−42, 199, 1467578)-Net in Base 4 — Upper bound on s
There is no (157, 199, 1467579)-net in base 4, because
- the generalized Rao bound for nets shows that 4m ≥ 645564 060159 134282 679061 158096 074867 953723 331170 546667 619814 302208 528865 960924 736577 601723 179500 456491 113653 906897 062428 > 4199 [i]