Best Known (164, 164+43, s)-Nets in Base 4
(164, 164+43, 1060)-Net over F4 — Constructive and digital
Digital (164, 207, 1060)-net over F4, using
- 1 times m-reduction [i] based on digital (164, 208, 1060)-net over F4, using
- trace code for nets [i] based on digital (8, 52, 265)-net over F256, using
- net from sequence [i] based on digital (8, 264)-sequence over F256, using
- trace code for nets [i] based on digital (8, 52, 265)-net over F256, using
(164, 164+43, 5126)-Net over F4 — Digital
Digital (164, 207, 5126)-net over F4, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(4207, 5126, F4, 43) (dual of [5126, 4919, 44]-code), using
- 4918 step Varšamov–Edel lengthening with (ri) = (12, 5, 3, 3, 2, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 20 times 0, 1, 21 times 0, 1, 22 times 0, 1, 22 times 0, 1, 24 times 0, 1, 24 times 0, 1, 25 times 0, 1, 26 times 0, 1, 27 times 0, 1, 27 times 0, 1, 29 times 0, 1, 30 times 0, 1, 31 times 0, 1, 32 times 0, 1, 33 times 0, 1, 34 times 0, 1, 36 times 0, 1, 37 times 0, 1, 38 times 0, 1, 39 times 0, 1, 41 times 0, 1, 42 times 0, 1, 44 times 0, 1, 45 times 0, 1, 47 times 0, 1, 49 times 0, 1, 50 times 0, 1, 52 times 0, 1, 54 times 0, 1, 55 times 0, 1, 58 times 0, 1, 59 times 0, 1, 62 times 0, 1, 64 times 0, 1, 66 times 0, 1, 68 times 0, 1, 71 times 0, 1, 73 times 0, 1, 75 times 0, 1, 78 times 0, 1, 81 times 0, 1, 84 times 0, 1, 86 times 0, 1, 90 times 0, 1, 93 times 0, 1, 95 times 0, 1, 99 times 0, 1, 103 times 0, 1, 106 times 0, 1, 109 times 0, 1, 113 times 0, 1, 117 times 0, 1, 122 times 0, 1, 125 times 0, 1, 130 times 0, 1, 134 times 0, 1, 138 times 0, 1, 143 times 0, 1, 148 times 0, 1, 153 times 0, 1, 159 times 0, 1, 164 times 0) [i] based on linear OA(443, 44, F4, 43) (dual of [44, 1, 44]-code or 44-arc in PG(42,4)), using
- dual of repetition code with length 44 [i]
- 4918 step Varšamov–Edel lengthening with (ri) = (12, 5, 3, 3, 2, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 20 times 0, 1, 21 times 0, 1, 22 times 0, 1, 22 times 0, 1, 24 times 0, 1, 24 times 0, 1, 25 times 0, 1, 26 times 0, 1, 27 times 0, 1, 27 times 0, 1, 29 times 0, 1, 30 times 0, 1, 31 times 0, 1, 32 times 0, 1, 33 times 0, 1, 34 times 0, 1, 36 times 0, 1, 37 times 0, 1, 38 times 0, 1, 39 times 0, 1, 41 times 0, 1, 42 times 0, 1, 44 times 0, 1, 45 times 0, 1, 47 times 0, 1, 49 times 0, 1, 50 times 0, 1, 52 times 0, 1, 54 times 0, 1, 55 times 0, 1, 58 times 0, 1, 59 times 0, 1, 62 times 0, 1, 64 times 0, 1, 66 times 0, 1, 68 times 0, 1, 71 times 0, 1, 73 times 0, 1, 75 times 0, 1, 78 times 0, 1, 81 times 0, 1, 84 times 0, 1, 86 times 0, 1, 90 times 0, 1, 93 times 0, 1, 95 times 0, 1, 99 times 0, 1, 103 times 0, 1, 106 times 0, 1, 109 times 0, 1, 113 times 0, 1, 117 times 0, 1, 122 times 0, 1, 125 times 0, 1, 130 times 0, 1, 134 times 0, 1, 138 times 0, 1, 143 times 0, 1, 148 times 0, 1, 153 times 0, 1, 159 times 0, 1, 164 times 0) [i] based on linear OA(443, 44, F4, 43) (dual of [44, 1, 44]-code or 44-arc in PG(42,4)), using
(164, 164+43, 2329646)-Net in Base 4 — Upper bound on s
There is no (164, 207, 2329647)-net in base 4, because
- 1 times m-reduction [i] would yield (164, 206, 2329647)-net in base 4, but
- the generalized Rao bound for nets shows that 4m ≥ 10576 975507 236187 220302 338662 050825 979131 518711 631685 606565 567326 797287 625596 812692 010837 388197 821491 313637 908116 658205 042212 > 4206 [i]