Best Known (129, 129+45, s)-Nets in Base 4
(129, 129+45, 531)-Net over F4 — Constructive and digital
Digital (129, 174, 531)-net over F4, using
- 9 times m-reduction [i] based on digital (129, 183, 531)-net over F4, using
- trace code for nets [i] based on digital (7, 61, 177)-net over F64, using
- net from sequence [i] based on digital (7, 176)-sequence over F64, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 7 and N(F) ≥ 177, using
- net from sequence [i] based on digital (7, 176)-sequence over F64, using
- trace code for nets [i] based on digital (7, 61, 177)-net over F64, using
(129, 129+45, 576)-Net in Base 4 — Constructive
(129, 174, 576)-net in base 4, using
- t-expansion [i] based on (128, 174, 576)-net in base 4, using
- trace code for nets [i] based on (12, 58, 192)-net in base 64, using
- 5 times m-reduction [i] based on (12, 63, 192)-net in base 64, using
- base change [i] based on digital (3, 54, 192)-net over F128, using
- net from sequence [i] based on digital (3, 191)-sequence over F128, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F128 with g(F) = 3 and N(F) ≥ 192, using
- net from sequence [i] based on digital (3, 191)-sequence over F128, using
- base change [i] based on digital (3, 54, 192)-net over F128, using
- 5 times m-reduction [i] based on (12, 63, 192)-net in base 64, using
- trace code for nets [i] based on (12, 58, 192)-net in base 64, using
(129, 129+45, 1405)-Net over F4 — Digital
Digital (129, 174, 1405)-net over F4, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(4174, 1405, F4, 45) (dual of [1405, 1231, 46]-code), using
- 1230 step Varšamov–Edel lengthening with (ri) = (12, 6, 3, 3, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 5 times 0, 1, 6 times 0, 1, 7 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 20 times 0, 1, 21 times 0, 1, 22 times 0, 1, 22 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 25 times 0, 1, 27 times 0, 1, 27 times 0, 1, 28 times 0, 1, 30 times 0, 1, 30 times 0, 1, 31 times 0, 1, 33 times 0, 1, 33 times 0, 1, 35 times 0, 1, 36 times 0, 1, 37 times 0, 1, 38 times 0, 1, 40 times 0, 1, 41 times 0) [i] based on linear OA(445, 46, F4, 45) (dual of [46, 1, 46]-code or 46-arc in PG(44,4)), using
- dual of repetition code with length 46 [i]
- 1230 step Varšamov–Edel lengthening with (ri) = (12, 6, 3, 3, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 5 times 0, 1, 6 times 0, 1, 7 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 20 times 0, 1, 21 times 0, 1, 22 times 0, 1, 22 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 25 times 0, 1, 27 times 0, 1, 27 times 0, 1, 28 times 0, 1, 30 times 0, 1, 30 times 0, 1, 31 times 0, 1, 33 times 0, 1, 33 times 0, 1, 35 times 0, 1, 36 times 0, 1, 37 times 0, 1, 38 times 0, 1, 40 times 0, 1, 41 times 0) [i] based on linear OA(445, 46, F4, 45) (dual of [46, 1, 46]-code or 46-arc in PG(44,4)), using
(129, 129+45, 163706)-Net in Base 4 — Upper bound on s
There is no (129, 174, 163707)-net in base 4, because
- 1 times m-reduction [i] would yield (129, 173, 163707)-net in base 4, but
- the generalized Rao bound for nets shows that 4m ≥ 143 357765 046769 770149 054988 087348 316874 592572 731133 607115 775166 224195 899106 759785 949511 210488 374724 431450 > 4173 [i]