Best Known (215−46, 215, s)-Nets in Base 4
(215−46, 215, 1056)-Net over F4 — Constructive and digital
Digital (169, 215, 1056)-net over F4, using
- 1 times m-reduction [i] based on digital (169, 216, 1056)-net over F4, using
- trace code for nets [i] based on digital (7, 54, 264)-net over F256, using
- net from sequence [i] based on digital (7, 263)-sequence over F256, using
- trace code for nets [i] based on digital (7, 54, 264)-net over F256, using
(215−46, 215, 4456)-Net over F4 — Digital
Digital (169, 215, 4456)-net over F4, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(4215, 4456, F4, 46) (dual of [4456, 4241, 47]-code), using
- 344 step Varšamov–Edel lengthening with (ri) = (2, 1, 0, 1, 4 times 0, 1, 10 times 0, 1, 20 times 0, 1, 37 times 0, 1, 61 times 0, 1, 89 times 0, 1, 113 times 0) [i] based on linear OA(4205, 4102, F4, 46) (dual of [4102, 3897, 47]-code), using
- construction X applied to Ce(45) ⊂ Ce(44) [i] based on
- linear OA(4205, 4096, F4, 46) (dual of [4096, 3891, 47]-code), using an extension Ce(45) of the primitive narrow-sense BCH-code C(I) with length 4095 = 46−1, defining interval I = [1,45], and designed minimum distance d ≥ |I|+1 = 46 [i]
- linear OA(4199, 4096, F4, 45) (dual of [4096, 3897, 46]-code), using an extension Ce(44) of the primitive narrow-sense BCH-code C(I) with length 4095 = 46−1, defining interval I = [1,44], and designed minimum distance d ≥ |I|+1 = 45 [i]
- linear OA(40, 6, F4, 0) (dual of [6, 6, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(40, s, F4, 0) (dual of [s, s, 1]-code) with arbitrarily large s, using
- construction X applied to Ce(45) ⊂ Ce(44) [i] based on
- 344 step Varšamov–Edel lengthening with (ri) = (2, 1, 0, 1, 4 times 0, 1, 10 times 0, 1, 20 times 0, 1, 37 times 0, 1, 61 times 0, 1, 89 times 0, 1, 113 times 0) [i] based on linear OA(4205, 4102, F4, 46) (dual of [4102, 3897, 47]-code), using
(215−46, 215, 1334384)-Net in Base 4 — Upper bound on s
There is no (169, 215, 1334385)-net in base 4, because
- the generalized Rao bound for nets shows that 4m ≥ 2772 685697 836131 583166 316720 644662 072217 615365 968456 096916 647052 751247 018312 795019 093997 634769 090398 767138 566005 173645 055434 996704 > 4215 [i]