Best Known (171, 171+46, s)-Nets in Base 4
(171, 171+46, 1060)-Net over F4 — Constructive and digital
Digital (171, 217, 1060)-net over F4, using
- 41 times duplication [i] based on digital (170, 216, 1060)-net over F4, using
- trace code for nets [i] based on digital (8, 54, 265)-net over F256, using
- net from sequence [i] based on digital (8, 264)-sequence over F256, using
- trace code for nets [i] based on digital (8, 54, 265)-net over F256, using
(171, 171+46, 4726)-Net over F4 — Digital
Digital (171, 217, 4726)-net over F4, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(4217, 4726, F4, 46) (dual of [4726, 4509, 47]-code), using
- 612 step Varšamov–Edel lengthening with (ri) = (2, 1, 0, 1, 4 times 0, 1, 10 times 0, 1, 20 times 0, 1, 37 times 0, 1, 61 times 0, 1, 89 times 0, 1, 113 times 0, 1, 128 times 0, 1, 138 times 0) [i] based on linear OA(4205, 4102, F4, 46) (dual of [4102, 3897, 47]-code), using
- construction X applied to Ce(45) ⊂ Ce(44) [i] based on
- linear OA(4205, 4096, F4, 46) (dual of [4096, 3891, 47]-code), using an extension Ce(45) of the primitive narrow-sense BCH-code C(I) with length 4095 = 46−1, defining interval I = [1,45], and designed minimum distance d ≥ |I|+1 = 46 [i]
- linear OA(4199, 4096, F4, 45) (dual of [4096, 3897, 46]-code), using an extension Ce(44) of the primitive narrow-sense BCH-code C(I) with length 4095 = 46−1, defining interval I = [1,44], and designed minimum distance d ≥ |I|+1 = 45 [i]
- linear OA(40, 6, F4, 0) (dual of [6, 6, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(40, s, F4, 0) (dual of [s, s, 1]-code) with arbitrarily large s, using
- construction X applied to Ce(45) ⊂ Ce(44) [i] based on
- 612 step Varšamov–Edel lengthening with (ri) = (2, 1, 0, 1, 4 times 0, 1, 10 times 0, 1, 20 times 0, 1, 37 times 0, 1, 61 times 0, 1, 89 times 0, 1, 113 times 0, 1, 128 times 0, 1, 138 times 0) [i] based on linear OA(4205, 4102, F4, 46) (dual of [4102, 3897, 47]-code), using
(171, 171+46, 1505340)-Net in Base 4 — Upper bound on s
There is no (171, 217, 1505341)-net in base 4, because
- the generalized Rao bound for nets shows that 4m ≥ 44362 986133 424241 279313 695600 876679 306032 310187 132160 477791 671537 986384 447124 974221 744803 711680 722062 780363 687710 620240 215582 737976 > 4217 [i]