Best Known (221−47, 221, s)-Nets in Base 4
(221−47, 221, 1060)-Net over F4 — Constructive and digital
Digital (174, 221, 1060)-net over F4, using
- 41 times duplication [i] based on digital (173, 220, 1060)-net over F4, using
- trace code for nets [i] based on digital (8, 55, 265)-net over F256, using
- net from sequence [i] based on digital (8, 264)-sequence over F256, using
- trace code for nets [i] based on digital (8, 55, 265)-net over F256, using
(221−47, 221, 4708)-Net over F4 — Digital
Digital (174, 221, 4708)-net over F4, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(4221, 4708, F4, 47) (dual of [4708, 4487, 48]-code), using
- 596 step Varšamov–Edel lengthening with (ri) = (2, 0, 0, 1, 8 times 0, 1, 19 times 0, 1, 37 times 0, 1, 61 times 0, 1, 89 times 0, 1, 111 times 0, 1, 126 times 0, 1, 134 times 0) [i] based on linear OA(4211, 4102, F4, 47) (dual of [4102, 3891, 48]-code), using
- construction X applied to Ce(46) ⊂ Ce(45) [i] based on
- linear OA(4211, 4096, F4, 47) (dual of [4096, 3885, 48]-code), using an extension Ce(46) of the primitive narrow-sense BCH-code C(I) with length 4095 = 46−1, defining interval I = [1,46], and designed minimum distance d ≥ |I|+1 = 47 [i]
- linear OA(4205, 4096, F4, 46) (dual of [4096, 3891, 47]-code), using an extension Ce(45) of the primitive narrow-sense BCH-code C(I) with length 4095 = 46−1, defining interval I = [1,45], and designed minimum distance d ≥ |I|+1 = 46 [i]
- linear OA(40, 6, F4, 0) (dual of [6, 6, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(40, s, F4, 0) (dual of [s, s, 1]-code) with arbitrarily large s, using
- construction X applied to Ce(46) ⊂ Ce(45) [i] based on
- 596 step Varšamov–Edel lengthening with (ri) = (2, 0, 0, 1, 8 times 0, 1, 19 times 0, 1, 37 times 0, 1, 61 times 0, 1, 89 times 0, 1, 111 times 0, 1, 126 times 0, 1, 134 times 0) [i] based on linear OA(4211, 4102, F4, 47) (dual of [4102, 3891, 48]-code), using
(221−47, 221, 1803703)-Net in Base 4 — Upper bound on s
There is no (174, 221, 1803704)-net in base 4, because
- 1 times m-reduction [i] would yield (174, 220, 1803704)-net in base 4, but
- the generalized Rao bound for nets shows that 4m ≥ 2 839219 550552 065023 924465 425414 317509 639503 362852 393721 692930 128932 742177 673668 738503 701339 285687 181159 951254 476931 196309 080009 966897 > 4220 [i]