Best Known (222−47, 222, s)-Nets in Base 4
(222−47, 222, 1060)-Net over F4 — Constructive and digital
Digital (175, 222, 1060)-net over F4, using
- 42 times duplication [i] based on digital (173, 220, 1060)-net over F4, using
- trace code for nets [i] based on digital (8, 55, 265)-net over F256, using
- net from sequence [i] based on digital (8, 264)-sequence over F256, using
- trace code for nets [i] based on digital (8, 55, 265)-net over F256, using
(222−47, 222, 4851)-Net over F4 — Digital
Digital (175, 222, 4851)-net over F4, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(4222, 4851, F4, 47) (dual of [4851, 4629, 48]-code), using
- 738 step Varšamov–Edel lengthening with (ri) = (2, 0, 0, 1, 8 times 0, 1, 19 times 0, 1, 37 times 0, 1, 61 times 0, 1, 89 times 0, 1, 111 times 0, 1, 126 times 0, 1, 134 times 0, 1, 141 times 0) [i] based on linear OA(4211, 4102, F4, 47) (dual of [4102, 3891, 48]-code), using
- construction X applied to Ce(46) ⊂ Ce(45) [i] based on
- linear OA(4211, 4096, F4, 47) (dual of [4096, 3885, 48]-code), using an extension Ce(46) of the primitive narrow-sense BCH-code C(I) with length 4095 = 46−1, defining interval I = [1,46], and designed minimum distance d ≥ |I|+1 = 47 [i]
- linear OA(4205, 4096, F4, 46) (dual of [4096, 3891, 47]-code), using an extension Ce(45) of the primitive narrow-sense BCH-code C(I) with length 4095 = 46−1, defining interval I = [1,45], and designed minimum distance d ≥ |I|+1 = 46 [i]
- linear OA(40, 6, F4, 0) (dual of [6, 6, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(40, s, F4, 0) (dual of [s, s, 1]-code) with arbitrarily large s, using
- construction X applied to Ce(46) ⊂ Ce(45) [i] based on
- 738 step Varšamov–Edel lengthening with (ri) = (2, 0, 0, 1, 8 times 0, 1, 19 times 0, 1, 37 times 0, 1, 61 times 0, 1, 89 times 0, 1, 111 times 0, 1, 126 times 0, 1, 134 times 0, 1, 141 times 0) [i] based on linear OA(4211, 4102, F4, 47) (dual of [4102, 3891, 48]-code), using
(222−47, 222, 1915764)-Net in Base 4 — Upper bound on s
There is no (175, 222, 1915765)-net in base 4, because
- 1 times m-reduction [i] would yield (175, 221, 1915765)-net in base 4, but
- the generalized Rao bound for nets shows that 4m ≥ 11 356987 672498 585599 433095 825567 808995 614006 408255 751131 018878 708875 607525 029876 000432 856465 631760 882058 615076 630467 186345 612096 426336 > 4221 [i]