Best Known (231−49, 231, s)-Nets in Base 4
(231−49, 231, 1539)-Net over F4 — Constructive and digital
Digital (182, 231, 1539)-net over F4, using
- trace code for nets [i] based on digital (28, 77, 513)-net over F64, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- the Hermitian function field over F64 [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
(231−49, 231, 4957)-Net over F4 — Digital
Digital (182, 231, 4957)-net over F4, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(4231, 4957, F4, 49) (dual of [4957, 4726, 50]-code), using
- 4725 step Varšamov–Edel lengthening with (ri) = (14, 6, 3, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 16 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 20 times 0, 1, 20 times 0, 1, 21 times 0, 1, 21 times 0, 1, 22 times 0, 1, 23 times 0, 1, 23 times 0, 1, 25 times 0, 1, 25 times 0, 1, 26 times 0, 1, 26 times 0, 1, 28 times 0, 1, 28 times 0, 1, 29 times 0, 1, 31 times 0, 1, 31 times 0, 1, 32 times 0, 1, 33 times 0, 1, 34 times 0, 1, 35 times 0, 1, 37 times 0, 1, 37 times 0, 1, 39 times 0, 1, 39 times 0, 1, 41 times 0, 1, 42 times 0, 1, 44 times 0, 1, 45 times 0, 1, 46 times 0, 1, 48 times 0, 1, 49 times 0, 1, 51 times 0, 1, 52 times 0, 1, 53 times 0, 1, 56 times 0, 1, 57 times 0, 1, 59 times 0, 1, 60 times 0, 1, 62 times 0, 1, 65 times 0, 1, 66 times 0, 1, 68 times 0, 1, 70 times 0, 1, 73 times 0, 1, 74 times 0, 1, 77 times 0, 1, 79 times 0, 1, 82 times 0, 1, 84 times 0, 1, 86 times 0, 1, 89 times 0, 1, 92 times 0, 1, 94 times 0, 1, 98 times 0, 1, 100 times 0, 1, 103 times 0, 1, 106 times 0, 1, 110 times 0, 1, 113 times 0, 1, 116 times 0, 1, 119 times 0, 1, 123 times 0, 1, 127 times 0, 1, 131 times 0, 1, 134 times 0, 1, 139 times 0) [i] based on linear OA(449, 50, F4, 49) (dual of [50, 1, 50]-code or 50-arc in PG(48,4)), using
- dual of repetition code with length 50 [i]
- 4725 step Varšamov–Edel lengthening with (ri) = (14, 6, 3, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 16 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 20 times 0, 1, 20 times 0, 1, 21 times 0, 1, 21 times 0, 1, 22 times 0, 1, 23 times 0, 1, 23 times 0, 1, 25 times 0, 1, 25 times 0, 1, 26 times 0, 1, 26 times 0, 1, 28 times 0, 1, 28 times 0, 1, 29 times 0, 1, 31 times 0, 1, 31 times 0, 1, 32 times 0, 1, 33 times 0, 1, 34 times 0, 1, 35 times 0, 1, 37 times 0, 1, 37 times 0, 1, 39 times 0, 1, 39 times 0, 1, 41 times 0, 1, 42 times 0, 1, 44 times 0, 1, 45 times 0, 1, 46 times 0, 1, 48 times 0, 1, 49 times 0, 1, 51 times 0, 1, 52 times 0, 1, 53 times 0, 1, 56 times 0, 1, 57 times 0, 1, 59 times 0, 1, 60 times 0, 1, 62 times 0, 1, 65 times 0, 1, 66 times 0, 1, 68 times 0, 1, 70 times 0, 1, 73 times 0, 1, 74 times 0, 1, 77 times 0, 1, 79 times 0, 1, 82 times 0, 1, 84 times 0, 1, 86 times 0, 1, 89 times 0, 1, 92 times 0, 1, 94 times 0, 1, 98 times 0, 1, 100 times 0, 1, 103 times 0, 1, 106 times 0, 1, 110 times 0, 1, 113 times 0, 1, 116 times 0, 1, 119 times 0, 1, 123 times 0, 1, 127 times 0, 1, 131 times 0, 1, 134 times 0, 1, 139 times 0) [i] based on linear OA(449, 50, F4, 49) (dual of [50, 1, 50]-code or 50-arc in PG(48,4)), using
(231−49, 231, 1922997)-Net in Base 4 — Upper bound on s
There is no (182, 231, 1922998)-net in base 4, because
- 1 times m-reduction [i] would yield (182, 230, 1922998)-net in base 4, but
- the generalized Rao bound for nets shows that 4m ≥ 2 977159 604830 599856 793048 677464 233492 275493 702510 123377 396989 444956 434804 650945 489855 836489 426030 872186 601600 920224 879066 252823 363472 852116 > 4230 [i]