Best Known (221−50, 221, s)-Nets in Base 4
(221−50, 221, 1048)-Net over F4 — Constructive and digital
Digital (171, 221, 1048)-net over F4, using
- 41 times duplication [i] based on digital (170, 220, 1048)-net over F4, using
- trace code for nets [i] based on digital (5, 55, 262)-net over F256, using
- net from sequence [i] based on digital (5, 261)-sequence over F256, using
- trace code for nets [i] based on digital (5, 55, 262)-net over F256, using
(221−50, 221, 3333)-Net over F4 — Digital
Digital (171, 221, 3333)-net over F4, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(4221, 3333, F4, 50) (dual of [3333, 3112, 51]-code), using
- 3111 step Varšamov–Edel lengthening with (ri) = (14, 6, 3, 3, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 16 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 20 times 0, 1, 20 times 0, 1, 21 times 0, 1, 22 times 0, 1, 23 times 0, 1, 23 times 0, 1, 24 times 0, 1, 24 times 0, 1, 25 times 0, 1, 27 times 0, 1, 27 times 0, 1, 27 times 0, 1, 29 times 0, 1, 29 times 0, 1, 31 times 0, 1, 31 times 0, 1, 32 times 0, 1, 34 times 0, 1, 34 times 0, 1, 35 times 0, 1, 37 times 0, 1, 37 times 0, 1, 39 times 0, 1, 40 times 0, 1, 41 times 0, 1, 42 times 0, 1, 43 times 0, 1, 45 times 0, 1, 46 times 0, 1, 48 times 0, 1, 49 times 0, 1, 50 times 0, 1, 52 times 0, 1, 53 times 0, 1, 55 times 0, 1, 57 times 0, 1, 59 times 0, 1, 60 times 0, 1, 62 times 0, 1, 63 times 0, 1, 66 times 0, 1, 67 times 0, 1, 70 times 0, 1, 72 times 0, 1, 73 times 0, 1, 76 times 0, 1, 78 times 0, 1, 81 times 0, 1, 83 times 0, 1, 85 times 0, 1, 87 times 0, 1, 91 times 0) [i] based on linear OA(450, 51, F4, 50) (dual of [51, 1, 51]-code or 51-arc in PG(49,4)), using
- dual of repetition code with length 51 [i]
- 3111 step Varšamov–Edel lengthening with (ri) = (14, 6, 3, 3, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 16 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 20 times 0, 1, 20 times 0, 1, 21 times 0, 1, 22 times 0, 1, 23 times 0, 1, 23 times 0, 1, 24 times 0, 1, 24 times 0, 1, 25 times 0, 1, 27 times 0, 1, 27 times 0, 1, 27 times 0, 1, 29 times 0, 1, 29 times 0, 1, 31 times 0, 1, 31 times 0, 1, 32 times 0, 1, 34 times 0, 1, 34 times 0, 1, 35 times 0, 1, 37 times 0, 1, 37 times 0, 1, 39 times 0, 1, 40 times 0, 1, 41 times 0, 1, 42 times 0, 1, 43 times 0, 1, 45 times 0, 1, 46 times 0, 1, 48 times 0, 1, 49 times 0, 1, 50 times 0, 1, 52 times 0, 1, 53 times 0, 1, 55 times 0, 1, 57 times 0, 1, 59 times 0, 1, 60 times 0, 1, 62 times 0, 1, 63 times 0, 1, 66 times 0, 1, 67 times 0, 1, 70 times 0, 1, 72 times 0, 1, 73 times 0, 1, 76 times 0, 1, 78 times 0, 1, 81 times 0, 1, 83 times 0, 1, 85 times 0, 1, 87 times 0, 1, 91 times 0) [i] based on linear OA(450, 51, F4, 50) (dual of [51, 1, 51]-code or 51-arc in PG(49,4)), using
(221−50, 221, 712364)-Net in Base 4 — Upper bound on s
There is no (171, 221, 712365)-net in base 4, because
- the generalized Rao bound for nets shows that 4m ≥ 11 356903 230505 339501 045638 558241 832867 241678 181899 394611 145264 624349 217293 740723 937167 385079 903652 577910 333970 553915 393075 330837 975296 > 4221 [i]