Best Known (180, 180+50, s)-Nets in Base 4
(180, 180+50, 1056)-Net over F4 — Constructive and digital
Digital (180, 230, 1056)-net over F4, using
- 42 times duplication [i] based on digital (178, 228, 1056)-net over F4, using
- trace code for nets [i] based on digital (7, 57, 264)-net over F256, using
- net from sequence [i] based on digital (7, 263)-sequence over F256, using
- trace code for nets [i] based on digital (7, 57, 264)-net over F256, using
(180, 180+50, 4318)-Net over F4 — Digital
Digital (180, 230, 4318)-net over F4, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(4230, 4318, F4, 50) (dual of [4318, 4088, 51]-code), using
- 209 step Varšamov–Edel lengthening with (ri) = (2, 0, 0, 1, 7 times 0, 1, 18 times 0, 1, 35 times 0, 1, 58 times 0, 1, 83 times 0) [i] based on linear OA(4223, 4102, F4, 50) (dual of [4102, 3879, 51]-code), using
- construction X applied to Ce(49) ⊂ Ce(48) [i] based on
- linear OA(4223, 4096, F4, 50) (dual of [4096, 3873, 51]-code), using an extension Ce(49) of the primitive narrow-sense BCH-code C(I) with length 4095 = 46−1, defining interval I = [1,49], and designed minimum distance d ≥ |I|+1 = 50 [i]
- linear OA(4217, 4096, F4, 49) (dual of [4096, 3879, 50]-code), using an extension Ce(48) of the primitive narrow-sense BCH-code C(I) with length 4095 = 46−1, defining interval I = [1,48], and designed minimum distance d ≥ |I|+1 = 49 [i]
- linear OA(40, 6, F4, 0) (dual of [6, 6, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(40, s, F4, 0) (dual of [s, s, 1]-code) with arbitrarily large s, using
- construction X applied to Ce(49) ⊂ Ce(48) [i] based on
- 209 step Varšamov–Edel lengthening with (ri) = (2, 0, 0, 1, 7 times 0, 1, 18 times 0, 1, 35 times 0, 1, 58 times 0, 1, 83 times 0) [i] based on linear OA(4223, 4102, F4, 50) (dual of [4102, 3879, 51]-code), using
(180, 180+50, 1173407)-Net in Base 4 — Upper bound on s
There is no (180, 230, 1173408)-net in base 4, because
- the generalized Rao bound for nets shows that 4m ≥ 2 977144 727574 110578 857759 426286 910026 909359 437078 117141 067806 970871 384862 696228 412589 693236 327445 020216 662077 684961 278656 230749 384647 070927 > 4230 [i]