Best Known (183, 183+50, s)-Nets in Base 4
(183, 183+50, 1060)-Net over F4 — Constructive and digital
Digital (183, 233, 1060)-net over F4, using
- 41 times duplication [i] based on digital (182, 232, 1060)-net over F4, using
- trace code for nets [i] based on digital (8, 58, 265)-net over F256, using
- net from sequence [i] based on digital (8, 264)-sequence over F256, using
- trace code for nets [i] based on digital (8, 58, 265)-net over F256, using
(183, 183+50, 4671)-Net over F4 — Digital
Digital (183, 233, 4671)-net over F4, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(4233, 4671, F4, 50) (dual of [4671, 4438, 51]-code), using
- 559 step Varšamov–Edel lengthening with (ri) = (2, 0, 0, 1, 7 times 0, 1, 18 times 0, 1, 35 times 0, 1, 58 times 0, 1, 83 times 0, 1, 104 times 0, 1, 118 times 0, 1, 125 times 0) [i] based on linear OA(4223, 4102, F4, 50) (dual of [4102, 3879, 51]-code), using
- construction X applied to Ce(49) ⊂ Ce(48) [i] based on
- linear OA(4223, 4096, F4, 50) (dual of [4096, 3873, 51]-code), using an extension Ce(49) of the primitive narrow-sense BCH-code C(I) with length 4095 = 46−1, defining interval I = [1,49], and designed minimum distance d ≥ |I|+1 = 50 [i]
- linear OA(4217, 4096, F4, 49) (dual of [4096, 3879, 50]-code), using an extension Ce(48) of the primitive narrow-sense BCH-code C(I) with length 4095 = 46−1, defining interval I = [1,48], and designed minimum distance d ≥ |I|+1 = 49 [i]
- linear OA(40, 6, F4, 0) (dual of [6, 6, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(40, s, F4, 0) (dual of [s, s, 1]-code) with arbitrarily large s, using
- construction X applied to Ce(49) ⊂ Ce(48) [i] based on
- 559 step Varšamov–Edel lengthening with (ri) = (2, 0, 0, 1, 7 times 0, 1, 18 times 0, 1, 35 times 0, 1, 58 times 0, 1, 83 times 0, 1, 104 times 0, 1, 118 times 0, 1, 125 times 0) [i] based on linear OA(4223, 4102, F4, 50) (dual of [4102, 3879, 51]-code), using
(183, 183+50, 1385789)-Net in Base 4 — Upper bound on s
There is no (183, 233, 1385790)-net in base 4, because
- the generalized Rao bound for nets shows that 4m ≥ 190 537547 855083 058308 520510 526614 576270 714005 061225 143149 356281 767671 628190 658464 567140 527487 433841 295635 176080 369196 937782 058295 254145 705307 > 4233 [i]