Best Known (210−51, 210, s)-Nets in Base 4
(210−51, 210, 1032)-Net over F4 — Constructive and digital
Digital (159, 210, 1032)-net over F4, using
- 42 times duplication [i] based on digital (157, 208, 1032)-net over F4, using
- trace code for nets [i] based on digital (1, 52, 258)-net over F256, using
- net from sequence [i] based on digital (1, 257)-sequence over F256, using
- trace code for nets [i] based on digital (1, 52, 258)-net over F256, using
(210−51, 210, 2219)-Net over F4 — Digital
Digital (159, 210, 2219)-net over F4, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(4210, 2219, F4, 51) (dual of [2219, 2009, 52]-code), using
- 2008 step Varšamov–Edel lengthening with (ri) = (14, 6, 4, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 8 times 0, 1, 9 times 0, 1, 10 times 0, 1, 9 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 20 times 0, 1, 21 times 0, 1, 22 times 0, 1, 22 times 0, 1, 22 times 0, 1, 24 times 0, 1, 24 times 0, 1, 25 times 0, 1, 25 times 0, 1, 27 times 0, 1, 27 times 0, 1, 28 times 0, 1, 29 times 0, 1, 29 times 0, 1, 31 times 0, 1, 31 times 0, 1, 33 times 0, 1, 33 times 0, 1, 35 times 0, 1, 35 times 0, 1, 37 times 0, 1, 37 times 0, 1, 39 times 0, 1, 40 times 0, 1, 41 times 0, 1, 42 times 0, 1, 43 times 0, 1, 45 times 0, 1, 46 times 0, 1, 48 times 0, 1, 49 times 0, 1, 50 times 0, 1, 51 times 0, 1, 53 times 0, 1, 55 times 0, 1, 57 times 0, 1, 58 times 0) [i] based on linear OA(451, 52, F4, 51) (dual of [52, 1, 52]-code or 52-arc in PG(50,4)), using
- dual of repetition code with length 52 [i]
- 2008 step Varšamov–Edel lengthening with (ri) = (14, 6, 4, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 8 times 0, 1, 9 times 0, 1, 10 times 0, 1, 9 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 20 times 0, 1, 21 times 0, 1, 22 times 0, 1, 22 times 0, 1, 22 times 0, 1, 24 times 0, 1, 24 times 0, 1, 25 times 0, 1, 25 times 0, 1, 27 times 0, 1, 27 times 0, 1, 28 times 0, 1, 29 times 0, 1, 29 times 0, 1, 31 times 0, 1, 31 times 0, 1, 33 times 0, 1, 33 times 0, 1, 35 times 0, 1, 35 times 0, 1, 37 times 0, 1, 37 times 0, 1, 39 times 0, 1, 40 times 0, 1, 41 times 0, 1, 42 times 0, 1, 43 times 0, 1, 45 times 0, 1, 46 times 0, 1, 48 times 0, 1, 49 times 0, 1, 50 times 0, 1, 51 times 0, 1, 53 times 0, 1, 55 times 0, 1, 57 times 0, 1, 58 times 0) [i] based on linear OA(451, 52, F4, 51) (dual of [52, 1, 52]-code or 52-arc in PG(50,4)), using
(210−51, 210, 366186)-Net in Base 4 — Upper bound on s
There is no (159, 210, 366187)-net in base 4, because
- 1 times m-reduction [i] would yield (159, 209, 366187)-net in base 4, but
- the generalized Rao bound for nets shows that 4m ≥ 676957 800903 634262 117065 671392 584474 451227 773380 059542 249856 755793 126143 736416 624937 739734 259117 116693 423349 459054 772168 535180 > 4209 [i]