Best Known (186, 186+51, s)-Nets in Base 4
(186, 186+51, 1539)-Net over F4 — Constructive and digital
Digital (186, 237, 1539)-net over F4, using
- trace code for nets [i] based on digital (28, 79, 513)-net over F64, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- the Hermitian function field over F64 [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
(186, 186+51, 4663)-Net over F4 — Digital
Digital (186, 237, 4663)-net over F4, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(4237, 4663, F4, 51) (dual of [4663, 4426, 52]-code), using
- 4425 step Varšamov–Edel lengthening with (ri) = (14, 6, 4, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 8 times 0, 1, 9 times 0, 1, 10 times 0, 1, 9 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 20 times 0, 1, 21 times 0, 1, 22 times 0, 1, 22 times 0, 1, 22 times 0, 1, 24 times 0, 1, 24 times 0, 1, 25 times 0, 1, 25 times 0, 1, 27 times 0, 1, 27 times 0, 1, 28 times 0, 1, 29 times 0, 1, 29 times 0, 1, 31 times 0, 1, 31 times 0, 1, 33 times 0, 1, 33 times 0, 1, 35 times 0, 1, 35 times 0, 1, 37 times 0, 1, 37 times 0, 1, 39 times 0, 1, 40 times 0, 1, 41 times 0, 1, 42 times 0, 1, 43 times 0, 1, 45 times 0, 1, 46 times 0, 1, 48 times 0, 1, 49 times 0, 1, 50 times 0, 1, 51 times 0, 1, 53 times 0, 1, 55 times 0, 1, 57 times 0, 1, 58 times 0, 1, 59 times 0, 1, 62 times 0, 1, 63 times 0, 1, 65 times 0, 1, 67 times 0, 1, 69 times 0, 1, 71 times 0, 1, 73 times 0, 1, 75 times 0, 1, 77 times 0, 1, 79 times 0, 1, 82 times 0, 1, 84 times 0, 1, 86 times 0, 1, 89 times 0, 1, 91 times 0, 1, 94 times 0, 1, 97 times 0, 1, 100 times 0, 1, 102 times 0, 1, 106 times 0, 1, 108 times 0, 1, 112 times 0, 1, 115 times 0, 1, 118 times 0, 1, 121 times 0, 1, 125 times 0) [i] based on linear OA(451, 52, F4, 51) (dual of [52, 1, 52]-code or 52-arc in PG(50,4)), using
- dual of repetition code with length 52 [i]
- 4425 step Varšamov–Edel lengthening with (ri) = (14, 6, 4, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 8 times 0, 1, 9 times 0, 1, 10 times 0, 1, 9 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 20 times 0, 1, 21 times 0, 1, 22 times 0, 1, 22 times 0, 1, 22 times 0, 1, 24 times 0, 1, 24 times 0, 1, 25 times 0, 1, 25 times 0, 1, 27 times 0, 1, 27 times 0, 1, 28 times 0, 1, 29 times 0, 1, 29 times 0, 1, 31 times 0, 1, 31 times 0, 1, 33 times 0, 1, 33 times 0, 1, 35 times 0, 1, 35 times 0, 1, 37 times 0, 1, 37 times 0, 1, 39 times 0, 1, 40 times 0, 1, 41 times 0, 1, 42 times 0, 1, 43 times 0, 1, 45 times 0, 1, 46 times 0, 1, 48 times 0, 1, 49 times 0, 1, 50 times 0, 1, 51 times 0, 1, 53 times 0, 1, 55 times 0, 1, 57 times 0, 1, 58 times 0, 1, 59 times 0, 1, 62 times 0, 1, 63 times 0, 1, 65 times 0, 1, 67 times 0, 1, 69 times 0, 1, 71 times 0, 1, 73 times 0, 1, 75 times 0, 1, 77 times 0, 1, 79 times 0, 1, 82 times 0, 1, 84 times 0, 1, 86 times 0, 1, 89 times 0, 1, 91 times 0, 1, 94 times 0, 1, 97 times 0, 1, 100 times 0, 1, 102 times 0, 1, 106 times 0, 1, 108 times 0, 1, 112 times 0, 1, 115 times 0, 1, 118 times 0, 1, 121 times 0, 1, 125 times 0) [i] based on linear OA(451, 52, F4, 51) (dual of [52, 1, 52]-code or 52-arc in PG(50,4)), using
(186, 186+51, 1636611)-Net in Base 4 — Upper bound on s
There is no (186, 237, 1636612)-net in base 4, because
- 1 times m-reduction [i] would yield (186, 236, 1636612)-net in base 4, but
- the generalized Rao bound for nets shows that 4m ≥ 12194 496119 745129 262317 985554 956223 218068 171069 151869 473664 664993 131147 226494 136912 788442 595315 120901 268752 302752 036805 051656 743268 436603 357856 > 4236 [i]