Best Known (204−52, 204, s)-Nets in Base 4
(204−52, 204, 540)-Net over F4 — Constructive and digital
Digital (152, 204, 540)-net over F4, using
- (u, u+v)-construction [i] based on
- digital (1, 27, 9)-net over F4, using
- net from sequence [i] based on digital (1, 8)-sequence over F4, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F4 with g(F) = 1 and N(F) ≥ 9, using
- the Hermitian function field over F4 [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F4 with g(F) = 1 and N(F) ≥ 9, using
- net from sequence [i] based on digital (1, 8)-sequence over F4, using
- digital (125, 177, 531)-net over F4, using
- trace code for nets [i] based on digital (7, 59, 177)-net over F64, using
- net from sequence [i] based on digital (7, 176)-sequence over F64, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 7 and N(F) ≥ 177, using
- net from sequence [i] based on digital (7, 176)-sequence over F64, using
- trace code for nets [i] based on digital (7, 59, 177)-net over F64, using
- digital (1, 27, 9)-net over F4, using
(204−52, 204, 648)-Net in Base 4 — Constructive
(152, 204, 648)-net in base 4, using
- t-expansion [i] based on (151, 204, 648)-net in base 4, using
- trace code for nets [i] based on (15, 68, 216)-net in base 64, using
- 2 times m-reduction [i] based on (15, 70, 216)-net in base 64, using
- base change [i] based on digital (5, 60, 216)-net over F128, using
- net from sequence [i] based on digital (5, 215)-sequence over F128, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F128 with g(F) = 5 and N(F) ≥ 216, using
- net from sequence [i] based on digital (5, 215)-sequence over F128, using
- base change [i] based on digital (5, 60, 216)-net over F128, using
- 2 times m-reduction [i] based on (15, 70, 216)-net in base 64, using
- trace code for nets [i] based on (15, 68, 216)-net in base 64, using
(204−52, 204, 1720)-Net over F4 — Digital
Digital (152, 204, 1720)-net over F4, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(4204, 1720, F4, 52) (dual of [1720, 1516, 53]-code), using
- 1515 step Varšamov–Edel lengthening with (ri) = (14, 7, 3, 3, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 16 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 20 times 0, 1, 20 times 0, 1, 21 times 0, 1, 22 times 0, 1, 22 times 0, 1, 23 times 0, 1, 24 times 0, 1, 24 times 0, 1, 25 times 0, 1, 26 times 0, 1, 27 times 0, 1, 27 times 0, 1, 28 times 0, 1, 29 times 0, 1, 30 times 0, 1, 31 times 0, 1, 32 times 0, 1, 32 times 0, 1, 34 times 0, 1, 35 times 0, 1, 35 times 0, 1, 37 times 0, 1, 37 times 0, 1, 39 times 0, 1, 40 times 0, 1, 41 times 0, 1, 42 times 0, 1, 44 times 0) [i] based on linear OA(452, 53, F4, 52) (dual of [53, 1, 53]-code or 53-arc in PG(51,4)), using
- dual of repetition code with length 53 [i]
- 1515 step Varšamov–Edel lengthening with (ri) = (14, 7, 3, 3, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 16 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 20 times 0, 1, 20 times 0, 1, 21 times 0, 1, 22 times 0, 1, 22 times 0, 1, 23 times 0, 1, 24 times 0, 1, 24 times 0, 1, 25 times 0, 1, 26 times 0, 1, 27 times 0, 1, 27 times 0, 1, 28 times 0, 1, 29 times 0, 1, 30 times 0, 1, 31 times 0, 1, 32 times 0, 1, 32 times 0, 1, 34 times 0, 1, 35 times 0, 1, 35 times 0, 1, 37 times 0, 1, 37 times 0, 1, 39 times 0, 1, 40 times 0, 1, 41 times 0, 1, 42 times 0, 1, 44 times 0) [i] based on linear OA(452, 53, F4, 52) (dual of [53, 1, 53]-code or 53-arc in PG(51,4)), using
(204−52, 204, 186199)-Net in Base 4 — Upper bound on s
There is no (152, 204, 186200)-net in base 4, because
- the generalized Rao bound for nets shows that 4m ≥ 661 132735 927487 636739 878218 935398 109085 012998 257798 935280 134881 709921 725289 123668 094472 959317 359748 598723 819352 938489 242040 > 4204 [i]