Best Known (225−56, 225, s)-Nets in Base 4
(225−56, 225, 1028)-Net over F4 — Constructive and digital
Digital (169, 225, 1028)-net over F4, using
- 41 times duplication [i] based on digital (168, 224, 1028)-net over F4, using
- trace code for nets [i] based on digital (0, 56, 257)-net over F256, using
- net from sequence [i] based on digital (0, 256)-sequence over F256, using
- generalized Faure sequence [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F256 with g(F) = 0 and N(F) ≥ 257, using
- the rational function field F256(x) [i]
- Niederreiter sequence [i]
- net from sequence [i] based on digital (0, 256)-sequence over F256, using
- trace code for nets [i] based on digital (0, 56, 257)-net over F256, using
(225−56, 225, 2093)-Net over F4 — Digital
Digital (169, 225, 2093)-net over F4, using
(225−56, 225, 259314)-Net in Base 4 — Upper bound on s
There is no (169, 225, 259315)-net in base 4, because
- the generalized Rao bound for nets shows that 4m ≥ 2907 360342 038041 391893 669893 733369 101260 501927 642301 515483 936632 440894 895881 828187 291851 234464 310260 300700 070808 927664 604945 316274 342280 > 4225 [i]