Best Known (237−57, 237, s)-Nets in Base 4
(237−57, 237, 1036)-Net over F4 — Constructive and digital
Digital (180, 237, 1036)-net over F4, using
- 41 times duplication [i] based on digital (179, 236, 1036)-net over F4, using
- trace code for nets [i] based on digital (2, 59, 259)-net over F256, using
- net from sequence [i] based on digital (2, 258)-sequence over F256, using
- trace code for nets [i] based on digital (2, 59, 259)-net over F256, using
(237−57, 237, 2584)-Net over F4 — Digital
Digital (180, 237, 2584)-net over F4, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(4237, 2584, F4, 57) (dual of [2584, 2347, 58]-code), using
- 2346 step Varšamov–Edel lengthening with (ri) = (16, 7, 3, 3, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 17 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 20 times 0, 1, 20 times 0, 1, 20 times 0, 1, 21 times 0, 1, 22 times 0, 1, 23 times 0, 1, 23 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 26 times 0, 1, 26 times 0, 1, 27 times 0, 1, 28 times 0, 1, 29 times 0, 1, 29 times 0, 1, 30 times 0, 1, 31 times 0, 1, 31 times 0, 1, 33 times 0, 1, 33 times 0, 1, 34 times 0, 1, 35 times 0, 1, 37 times 0, 1, 37 times 0, 1, 38 times 0, 1, 39 times 0, 1, 40 times 0, 1, 41 times 0, 1, 42 times 0, 1, 43 times 0, 1, 45 times 0, 1, 45 times 0, 1, 47 times 0, 1, 48 times 0, 1, 49 times 0, 1, 51 times 0, 1, 52 times 0, 1, 53 times 0, 1, 55 times 0, 1, 56 times 0, 1, 57 times 0, 1, 59 times 0, 1, 61 times 0) [i] based on linear OA(457, 58, F4, 57) (dual of [58, 1, 58]-code or 58-arc in PG(56,4)), using
- dual of repetition code with length 58 [i]
- 2346 step Varšamov–Edel lengthening with (ri) = (16, 7, 3, 3, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 17 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 20 times 0, 1, 20 times 0, 1, 20 times 0, 1, 21 times 0, 1, 22 times 0, 1, 23 times 0, 1, 23 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 26 times 0, 1, 26 times 0, 1, 27 times 0, 1, 28 times 0, 1, 29 times 0, 1, 29 times 0, 1, 30 times 0, 1, 31 times 0, 1, 31 times 0, 1, 33 times 0, 1, 33 times 0, 1, 34 times 0, 1, 35 times 0, 1, 37 times 0, 1, 37 times 0, 1, 38 times 0, 1, 39 times 0, 1, 40 times 0, 1, 41 times 0, 1, 42 times 0, 1, 43 times 0, 1, 45 times 0, 1, 45 times 0, 1, 47 times 0, 1, 48 times 0, 1, 49 times 0, 1, 51 times 0, 1, 52 times 0, 1, 53 times 0, 1, 55 times 0, 1, 56 times 0, 1, 57 times 0, 1, 59 times 0, 1, 61 times 0) [i] based on linear OA(457, 58, F4, 57) (dual of [58, 1, 58]-code or 58-arc in PG(56,4)), using
(237−57, 237, 447061)-Net in Base 4 — Upper bound on s
There is no (180, 237, 447062)-net in base 4, because
- 1 times m-reduction [i] would yield (180, 236, 447062)-net in base 4, but
- the generalized Rao bound for nets shows that 4m ≥ 12194 739943 239057 237970 730191 465556 128266 268904 407302 051189 418431 795800 197280 349602 187034 792444 593255 983811 281957 248677 733790 408843 165674 135480 > 4236 [i]