Best Known (197, 197+58, s)-Nets in Base 4
(197, 197+58, 1048)-Net over F4 — Constructive and digital
Digital (197, 255, 1048)-net over F4, using
- 1 times m-reduction [i] based on digital (197, 256, 1048)-net over F4, using
- trace code for nets [i] based on digital (5, 64, 262)-net over F256, using
- net from sequence [i] based on digital (5, 261)-sequence over F256, using
- trace code for nets [i] based on digital (5, 64, 262)-net over F256, using
(197, 197+58, 3662)-Net over F4 — Digital
Digital (197, 255, 3662)-net over F4, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(4255, 3662, F4, 58) (dual of [3662, 3407, 59]-code), using
- 3406 step Varšamov–Edel lengthening with (ri) = (16, 7, 4, 3, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 8 times 0, 1, 9 times 0, 1, 10 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 17 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 20 times 0, 1, 20 times 0, 1, 21 times 0, 1, 22 times 0, 1, 22 times 0, 1, 22 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 25 times 0, 1, 26 times 0, 1, 26 times 0, 1, 28 times 0, 1, 28 times 0, 1, 28 times 0, 1, 30 times 0, 1, 30 times 0, 1, 31 times 0, 1, 32 times 0, 1, 32 times 0, 1, 34 times 0, 1, 34 times 0, 1, 35 times 0, 1, 37 times 0, 1, 37 times 0, 1, 38 times 0, 1, 39 times 0, 1, 40 times 0, 1, 41 times 0, 1, 42 times 0, 1, 43 times 0, 1, 45 times 0, 1, 45 times 0, 1, 47 times 0, 1, 48 times 0, 1, 49 times 0, 1, 51 times 0, 1, 51 times 0, 1, 53 times 0, 1, 55 times 0, 1, 55 times 0, 1, 57 times 0, 1, 59 times 0, 1, 60 times 0, 1, 62 times 0, 1, 63 times 0, 1, 65 times 0, 1, 66 times 0, 1, 68 times 0, 1, 70 times 0, 1, 72 times 0, 1, 73 times 0, 1, 76 times 0, 1, 77 times 0, 1, 79 times 0, 1, 81 times 0, 1, 83 times 0, 1, 86 times 0) [i] based on linear OA(458, 59, F4, 58) (dual of [59, 1, 59]-code or 59-arc in PG(57,4)), using
- dual of repetition code with length 59 [i]
- 3406 step Varšamov–Edel lengthening with (ri) = (16, 7, 4, 3, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 8 times 0, 1, 9 times 0, 1, 10 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 17 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 20 times 0, 1, 20 times 0, 1, 21 times 0, 1, 22 times 0, 1, 22 times 0, 1, 22 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 25 times 0, 1, 26 times 0, 1, 26 times 0, 1, 28 times 0, 1, 28 times 0, 1, 28 times 0, 1, 30 times 0, 1, 30 times 0, 1, 31 times 0, 1, 32 times 0, 1, 32 times 0, 1, 34 times 0, 1, 34 times 0, 1, 35 times 0, 1, 37 times 0, 1, 37 times 0, 1, 38 times 0, 1, 39 times 0, 1, 40 times 0, 1, 41 times 0, 1, 42 times 0, 1, 43 times 0, 1, 45 times 0, 1, 45 times 0, 1, 47 times 0, 1, 48 times 0, 1, 49 times 0, 1, 51 times 0, 1, 51 times 0, 1, 53 times 0, 1, 55 times 0, 1, 55 times 0, 1, 57 times 0, 1, 59 times 0, 1, 60 times 0, 1, 62 times 0, 1, 63 times 0, 1, 65 times 0, 1, 66 times 0, 1, 68 times 0, 1, 70 times 0, 1, 72 times 0, 1, 73 times 0, 1, 76 times 0, 1, 77 times 0, 1, 79 times 0, 1, 81 times 0, 1, 83 times 0, 1, 86 times 0) [i] based on linear OA(458, 59, F4, 58) (dual of [59, 1, 59]-code or 59-arc in PG(57,4)), using
(197, 197+58, 765531)-Net in Base 4 — Upper bound on s
There is no (197, 255, 765532)-net in base 4, because
- the generalized Rao bound for nets shows that 4m ≥ 3352 000321 092273 163734 115730 866778 539588 372044 934479 640171 033836 563085 270416 908272 940494 527509 688506 850154 189014 905100 478100 039979 102695 797709 306514 320528 > 4255 [i]