Best Known (259−59, 259, s)-Nets in Base 4
(259−59, 259, 1048)-Net over F4 — Constructive and digital
Digital (200, 259, 1048)-net over F4, using
- 1 times m-reduction [i] based on digital (200, 260, 1048)-net over F4, using
- trace code for nets [i] based on digital (5, 65, 262)-net over F256, using
- net from sequence [i] based on digital (5, 261)-sequence over F256, using
- trace code for nets [i] based on digital (5, 65, 262)-net over F256, using
(259−59, 259, 3682)-Net over F4 — Digital
Digital (200, 259, 3682)-net over F4, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(4259, 3682, F4, 59) (dual of [3682, 3423, 60]-code), using
- 3422 step Varšamov–Edel lengthening with (ri) = (16, 7, 4, 3, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 19 times 0, 1, 20 times 0, 1, 21 times 0, 1, 21 times 0, 1, 22 times 0, 1, 22 times 0, 1, 23 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 26 times 0, 1, 26 times 0, 1, 27 times 0, 1, 27 times 0, 1, 28 times 0, 1, 29 times 0, 1, 30 times 0, 1, 30 times 0, 1, 31 times 0, 1, 32 times 0, 1, 33 times 0, 1, 33 times 0, 1, 35 times 0, 1, 35 times 0, 1, 36 times 0, 1, 38 times 0, 1, 38 times 0, 1, 39 times 0, 1, 40 times 0, 1, 41 times 0, 1, 42 times 0, 1, 44 times 0, 1, 44 times 0, 1, 45 times 0, 1, 47 times 0, 1, 48 times 0, 1, 49 times 0, 1, 50 times 0, 1, 52 times 0, 1, 52 times 0, 1, 54 times 0, 1, 56 times 0, 1, 57 times 0, 1, 58 times 0, 1, 60 times 0, 1, 61 times 0, 1, 63 times 0, 1, 64 times 0, 1, 66 times 0, 1, 68 times 0, 1, 69 times 0, 1, 71 times 0, 1, 73 times 0, 1, 74 times 0, 1, 77 times 0, 1, 78 times 0, 1, 80 times 0, 1, 82 times 0, 1, 85 times 0) [i] based on linear OA(459, 60, F4, 59) (dual of [60, 1, 60]-code or 60-arc in PG(58,4)), using
- dual of repetition code with length 60 [i]
- 3422 step Varšamov–Edel lengthening with (ri) = (16, 7, 4, 3, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 19 times 0, 1, 20 times 0, 1, 21 times 0, 1, 21 times 0, 1, 22 times 0, 1, 22 times 0, 1, 23 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 26 times 0, 1, 26 times 0, 1, 27 times 0, 1, 27 times 0, 1, 28 times 0, 1, 29 times 0, 1, 30 times 0, 1, 30 times 0, 1, 31 times 0, 1, 32 times 0, 1, 33 times 0, 1, 33 times 0, 1, 35 times 0, 1, 35 times 0, 1, 36 times 0, 1, 38 times 0, 1, 38 times 0, 1, 39 times 0, 1, 40 times 0, 1, 41 times 0, 1, 42 times 0, 1, 44 times 0, 1, 44 times 0, 1, 45 times 0, 1, 47 times 0, 1, 48 times 0, 1, 49 times 0, 1, 50 times 0, 1, 52 times 0, 1, 52 times 0, 1, 54 times 0, 1, 56 times 0, 1, 57 times 0, 1, 58 times 0, 1, 60 times 0, 1, 61 times 0, 1, 63 times 0, 1, 64 times 0, 1, 66 times 0, 1, 68 times 0, 1, 69 times 0, 1, 71 times 0, 1, 73 times 0, 1, 74 times 0, 1, 77 times 0, 1, 78 times 0, 1, 80 times 0, 1, 82 times 0, 1, 85 times 0) [i] based on linear OA(459, 60, F4, 59) (dual of [60, 1, 60]-code or 60-arc in PG(58,4)), using
(259−59, 259, 883582)-Net in Base 4 — Upper bound on s
There is no (200, 259, 883583)-net in base 4, because
- 1 times m-reduction [i] would yield (200, 258, 883583)-net in base 4, but
- the generalized Rao bound for nets shows that 4m ≥ 214530 031267 356640 564325 202148 646514 782132 349329 926695 108436 272289 934536 963992 874798 651555 975819 491951 164954 162264 954779 926478 806370 005989 303619 080280 507898 > 4258 [i]