Best Known (195, 195+60, s)-Nets in Base 4
(195, 195+60, 1040)-Net over F4 — Constructive and digital
Digital (195, 255, 1040)-net over F4, using
- 1 times m-reduction [i] based on digital (195, 256, 1040)-net over F4, using
- trace code for nets [i] based on digital (3, 64, 260)-net over F256, using
- net from sequence [i] based on digital (3, 259)-sequence over F256, using
- trace code for nets [i] based on digital (3, 64, 260)-net over F256, using
(195, 195+60, 3073)-Net over F4 — Digital
Digital (195, 255, 3073)-net over F4, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(4255, 3073, F4, 60) (dual of [3073, 2818, 61]-code), using
- 2817 step Varšamov–Edel lengthening with (ri) = (16, 7, 4, 3, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 17 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 20 times 0, 1, 20 times 0, 1, 20 times 0, 1, 21 times 0, 1, 21 times 0, 1, 22 times 0, 1, 23 times 0, 1, 23 times 0, 1, 24 times 0, 1, 24 times 0, 1, 25 times 0, 1, 25 times 0, 1, 27 times 0, 1, 27 times 0, 1, 27 times 0, 1, 29 times 0, 1, 29 times 0, 1, 30 times 0, 1, 30 times 0, 1, 31 times 0, 1, 32 times 0, 1, 33 times 0, 1, 34 times 0, 1, 35 times 0, 1, 35 times 0, 1, 36 times 0, 1, 38 times 0, 1, 38 times 0, 1, 39 times 0, 1, 40 times 0, 1, 41 times 0, 1, 42 times 0, 1, 44 times 0, 1, 44 times 0, 1, 45 times 0, 1, 47 times 0, 1, 48 times 0, 1, 49 times 0, 1, 50 times 0, 1, 51 times 0, 1, 53 times 0, 1, 54 times 0, 1, 55 times 0, 1, 56 times 0, 1, 58 times 0, 1, 59 times 0, 1, 61 times 0, 1, 63 times 0, 1, 64 times 0, 1, 65 times 0, 1, 67 times 0, 1, 69 times 0) [i] based on linear OA(460, 61, F4, 60) (dual of [61, 1, 61]-code or 61-arc in PG(59,4)), using
- dual of repetition code with length 61 [i]
- 2817 step Varšamov–Edel lengthening with (ri) = (16, 7, 4, 3, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 17 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 20 times 0, 1, 20 times 0, 1, 20 times 0, 1, 21 times 0, 1, 21 times 0, 1, 22 times 0, 1, 23 times 0, 1, 23 times 0, 1, 24 times 0, 1, 24 times 0, 1, 25 times 0, 1, 25 times 0, 1, 27 times 0, 1, 27 times 0, 1, 27 times 0, 1, 29 times 0, 1, 29 times 0, 1, 30 times 0, 1, 30 times 0, 1, 31 times 0, 1, 32 times 0, 1, 33 times 0, 1, 34 times 0, 1, 35 times 0, 1, 35 times 0, 1, 36 times 0, 1, 38 times 0, 1, 38 times 0, 1, 39 times 0, 1, 40 times 0, 1, 41 times 0, 1, 42 times 0, 1, 44 times 0, 1, 44 times 0, 1, 45 times 0, 1, 47 times 0, 1, 48 times 0, 1, 49 times 0, 1, 50 times 0, 1, 51 times 0, 1, 53 times 0, 1, 54 times 0, 1, 55 times 0, 1, 56 times 0, 1, 58 times 0, 1, 59 times 0, 1, 61 times 0, 1, 63 times 0, 1, 64 times 0, 1, 65 times 0, 1, 67 times 0, 1, 69 times 0) [i] based on linear OA(460, 61, F4, 60) (dual of [61, 1, 61]-code or 61-arc in PG(59,4)), using
(195, 195+60, 526207)-Net in Base 4 — Upper bound on s
There is no (195, 255, 526208)-net in base 4, because
- the generalized Rao bound for nets shows that 4m ≥ 3352 027330 888372 611849 331963 969352 145901 284802 908545 963443 130670 166880 910799 747806 708485 032356 800293 210217 290501 585094 124633 262763 408259 380688 309330 922441 > 4255 [i]