Best Known (193, 193+64, s)-Nets in Base 4
(193, 193+64, 1028)-Net over F4 — Constructive and digital
Digital (193, 257, 1028)-net over F4, using
- 41 times duplication [i] based on digital (192, 256, 1028)-net over F4, using
- trace code for nets [i] based on digital (0, 64, 257)-net over F256, using
- net from sequence [i] based on digital (0, 256)-sequence over F256, using
- generalized Faure sequence [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F256 with g(F) = 0 and N(F) ≥ 257, using
- the rational function field F256(x) [i]
- Niederreiter sequence [i]
- net from sequence [i] based on digital (0, 256)-sequence over F256, using
- trace code for nets [i] based on digital (0, 64, 257)-net over F256, using
(193, 193+64, 2346)-Net over F4 — Digital
Digital (193, 257, 2346)-net over F4, using
(193, 193+64, 291752)-Net in Base 4 — Upper bound on s
There is no (193, 257, 291753)-net in base 4, because
- the generalized Rao bound for nets shows that 4m ≥ 53634 632338 120185 884016 236354 106217 859452 660666 895180 326708 716541 693180 902888 758810 175341 653317 548276 553611 102456 246772 210410 704419 167022 194557 437870 243793 > 4257 [i]