Best Known (106, 137, s)-Nets in Base 4
(106, 137, 1040)-Net over F4 — Constructive and digital
Digital (106, 137, 1040)-net over F4, using
- 41 times duplication [i] based on digital (105, 136, 1040)-net over F4, using
- trace code for nets [i] based on digital (3, 34, 260)-net over F256, using
- net from sequence [i] based on digital (3, 259)-sequence over F256, using
- trace code for nets [i] based on digital (3, 34, 260)-net over F256, using
(106, 137, 2270)-Net over F4 — Digital
Digital (106, 137, 2270)-net over F4, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(4137, 2270, F4, 31) (dual of [2270, 2133, 32]-code), using
- 2132 step Varšamov–Edel lengthening with (ri) = (9, 4, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 19 times 0, 1, 20 times 0, 1, 22 times 0, 1, 22 times 0, 1, 24 times 0, 1, 24 times 0, 1, 26 times 0, 1, 27 times 0, 1, 29 times 0, 1, 30 times 0, 1, 32 times 0, 1, 33 times 0, 1, 35 times 0, 1, 36 times 0, 1, 39 times 0, 1, 40 times 0, 1, 42 times 0, 1, 45 times 0, 1, 46 times 0, 1, 49 times 0, 1, 51 times 0, 1, 54 times 0, 1, 57 times 0, 1, 59 times 0, 1, 62 times 0, 1, 65 times 0, 1, 69 times 0, 1, 71 times 0, 1, 75 times 0, 1, 79 times 0, 1, 83 times 0, 1, 87 times 0, 1, 91 times 0, 1, 95 times 0, 1, 100 times 0) [i] based on linear OA(431, 32, F4, 31) (dual of [32, 1, 32]-code or 32-arc in PG(30,4)), using
- dual of repetition code with length 32 [i]
- 2132 step Varšamov–Edel lengthening with (ri) = (9, 4, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 19 times 0, 1, 20 times 0, 1, 22 times 0, 1, 22 times 0, 1, 24 times 0, 1, 24 times 0, 1, 26 times 0, 1, 27 times 0, 1, 29 times 0, 1, 30 times 0, 1, 32 times 0, 1, 33 times 0, 1, 35 times 0, 1, 36 times 0, 1, 39 times 0, 1, 40 times 0, 1, 42 times 0, 1, 45 times 0, 1, 46 times 0, 1, 49 times 0, 1, 51 times 0, 1, 54 times 0, 1, 57 times 0, 1, 59 times 0, 1, 62 times 0, 1, 65 times 0, 1, 69 times 0, 1, 71 times 0, 1, 75 times 0, 1, 79 times 0, 1, 83 times 0, 1, 87 times 0, 1, 91 times 0, 1, 95 times 0, 1, 100 times 0) [i] based on linear OA(431, 32, F4, 31) (dual of [32, 1, 32]-code or 32-arc in PG(30,4)), using
(106, 137, 615622)-Net in Base 4 — Upper bound on s
There is no (106, 137, 615623)-net in base 4, because
- 1 times m-reduction [i] would yield (106, 136, 615623)-net in base 4, but
- the generalized Rao bound for nets shows that 4m ≥ 7588 723746 423574 389692 215702 231121 228667 649113 235377 372888 018090 977038 691820 405856 > 4136 [i]