Best Known (147, 192, s)-Nets in Base 4
(147, 192, 1040)-Net over F4 — Constructive and digital
Digital (147, 192, 1040)-net over F4, using
- trace code for nets [i] based on digital (3, 48, 260)-net over F256, using
- net from sequence [i] based on digital (3, 259)-sequence over F256, using
(147, 192, 2460)-Net over F4 — Digital
Digital (147, 192, 2460)-net over F4, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(4192, 2460, F4, 45) (dual of [2460, 2268, 46]-code), using
- 2267 step Varšamov–Edel lengthening with (ri) = (12, 6, 3, 3, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 5 times 0, 1, 6 times 0, 1, 7 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 20 times 0, 1, 21 times 0, 1, 22 times 0, 1, 22 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 25 times 0, 1, 27 times 0, 1, 27 times 0, 1, 28 times 0, 1, 30 times 0, 1, 30 times 0, 1, 31 times 0, 1, 33 times 0, 1, 33 times 0, 1, 35 times 0, 1, 36 times 0, 1, 37 times 0, 1, 38 times 0, 1, 40 times 0, 1, 41 times 0, 1, 42 times 0, 1, 43 times 0, 1, 45 times 0, 1, 47 times 0, 1, 48 times 0, 1, 50 times 0, 1, 52 times 0, 1, 53 times 0, 1, 55 times 0, 1, 57 times 0, 1, 58 times 0, 1, 61 times 0, 1, 62 times 0, 1, 65 times 0, 1, 67 times 0, 1, 69 times 0, 1, 71 times 0, 1, 74 times 0) [i] based on linear OA(445, 46, F4, 45) (dual of [46, 1, 46]-code or 46-arc in PG(44,4)), using
- dual of repetition code with length 46 [i]
- 2267 step Varšamov–Edel lengthening with (ri) = (12, 6, 3, 3, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 5 times 0, 1, 6 times 0, 1, 7 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 20 times 0, 1, 21 times 0, 1, 22 times 0, 1, 22 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 25 times 0, 1, 27 times 0, 1, 27 times 0, 1, 28 times 0, 1, 30 times 0, 1, 30 times 0, 1, 31 times 0, 1, 33 times 0, 1, 33 times 0, 1, 35 times 0, 1, 36 times 0, 1, 37 times 0, 1, 38 times 0, 1, 40 times 0, 1, 41 times 0, 1, 42 times 0, 1, 43 times 0, 1, 45 times 0, 1, 47 times 0, 1, 48 times 0, 1, 50 times 0, 1, 52 times 0, 1, 53 times 0, 1, 55 times 0, 1, 57 times 0, 1, 58 times 0, 1, 61 times 0, 1, 62 times 0, 1, 65 times 0, 1, 67 times 0, 1, 69 times 0, 1, 71 times 0, 1, 74 times 0) [i] based on linear OA(445, 46, F4, 45) (dual of [46, 1, 46]-code or 46-arc in PG(44,4)), using
(147, 192, 508969)-Net in Base 4 — Upper bound on s
There is no (147, 192, 508970)-net in base 4, because
- 1 times m-reduction [i] would yield (147, 191, 508970)-net in base 4, but
- the generalized Rao bound for nets shows that 4m ≥ 9 850626 082446 818558 222806 828636 768394 492343 013169 642729 866615 864517 332256 445293 141425 660654 320445 721231 493702 993304 > 4191 [i]