Best Known (180, 226, s)-Nets in Base 4
(180, 226, 1539)-Net over F4 — Constructive and digital
Digital (180, 226, 1539)-net over F4, using
- 2 times m-reduction [i] based on digital (180, 228, 1539)-net over F4, using
- trace code for nets [i] based on digital (28, 76, 513)-net over F64, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- the Hermitian function field over F64 [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
- trace code for nets [i] based on digital (28, 76, 513)-net over F64, using
(180, 226, 6227)-Net over F4 — Digital
Digital (180, 226, 6227)-net over F4, using
(180, 226, 2589558)-Net in Base 4 — Upper bound on s
There is no (180, 226, 2589559)-net in base 4, because
- the generalized Rao bound for nets shows that 4m ≥ 11629 473971 786829 457622 010196 139629 966161 167748 429282 275046 604371 444124 095252 432481 866810 516924 857330 662494 365831 090541 425276 742705 145588 > 4226 [i]