Best Known (182, 232, s)-Nets in Base 4
(182, 232, 1060)-Net over F4 — Constructive and digital
Digital (182, 232, 1060)-net over F4, using
- trace code for nets [i] based on digital (8, 58, 265)-net over F256, using
- net from sequence [i] based on digital (8, 264)-sequence over F256, using
(182, 232, 4544)-Net over F4 — Digital
Digital (182, 232, 4544)-net over F4, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(4232, 4544, F4, 50) (dual of [4544, 4312, 51]-code), using
- 433 step Varšamov–Edel lengthening with (ri) = (2, 0, 0, 1, 7 times 0, 1, 18 times 0, 1, 35 times 0, 1, 58 times 0, 1, 83 times 0, 1, 104 times 0, 1, 118 times 0) [i] based on linear OA(4223, 4102, F4, 50) (dual of [4102, 3879, 51]-code), using
- construction X applied to Ce(49) ⊂ Ce(48) [i] based on
- linear OA(4223, 4096, F4, 50) (dual of [4096, 3873, 51]-code), using an extension Ce(49) of the primitive narrow-sense BCH-code C(I) with length 4095 = 46−1, defining interval I = [1,49], and designed minimum distance d ≥ |I|+1 = 50 [i]
- linear OA(4217, 4096, F4, 49) (dual of [4096, 3879, 50]-code), using an extension Ce(48) of the primitive narrow-sense BCH-code C(I) with length 4095 = 46−1, defining interval I = [1,48], and designed minimum distance d ≥ |I|+1 = 49 [i]
- linear OA(40, 6, F4, 0) (dual of [6, 6, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(40, s, F4, 0) (dual of [s, s, 1]-code) with arbitrarily large s, using
- construction X applied to Ce(49) ⊂ Ce(48) [i] based on
- 433 step Varšamov–Edel lengthening with (ri) = (2, 0, 0, 1, 7 times 0, 1, 18 times 0, 1, 35 times 0, 1, 58 times 0, 1, 83 times 0, 1, 104 times 0, 1, 118 times 0) [i] based on linear OA(4223, 4102, F4, 50) (dual of [4102, 3879, 51]-code), using
(182, 232, 1311035)-Net in Base 4 — Upper bound on s
There is no (182, 232, 1311036)-net in base 4, because
- the generalized Rao bound for nets shows that 4m ≥ 47 634269 390183 114768 653520 248923 504582 027022 097883 553592 116433 160335 649073 075961 613751 930029 945157 861561 783142 580666 413633 935781 427370 432987 > 4232 [i]