Best Known (184, 232, s)-Nets in Base 4
(184, 232, 1539)-Net over F4 — Constructive and digital
Digital (184, 232, 1539)-net over F4, using
- 2 times m-reduction [i] based on digital (184, 234, 1539)-net over F4, using
- trace code for nets [i] based on digital (28, 78, 513)-net over F64, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- the Hermitian function field over F64 [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
- trace code for nets [i] based on digital (28, 78, 513)-net over F64, using
(184, 232, 5762)-Net over F4 — Digital
Digital (184, 232, 5762)-net over F4, using
(184, 232, 2158493)-Net in Base 4 — Upper bound on s
There is no (184, 232, 2158494)-net in base 4, because
- the generalized Rao bound for nets shows that 4m ≥ 47 634203 076150 801898 087280 718079 180550 703115 445869 116206 223545 711934 854648 748327 874406 398338 073764 327400 788646 745785 758914 739603 637553 676811 > 4232 [i]