Best Known (67, 251, s)-Nets in Base 4
(67, 251, 66)-Net over F4 — Constructive and digital
Digital (67, 251, 66)-net over F4, using
- t-expansion [i] based on digital (49, 251, 66)-net over F4, using
- net from sequence [i] based on digital (49, 65)-sequence over F4, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F4 with g(F) = 49 and N(F) ≥ 66, using
- T6 from the second tower of function fields by GarcÃa and Stichtenoth over F4 [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F4 with g(F) = 49 and N(F) ≥ 66, using
- net from sequence [i] based on digital (49, 65)-sequence over F4, using
(67, 251, 99)-Net over F4 — Digital
Digital (67, 251, 99)-net over F4, using
- t-expansion [i] based on digital (61, 251, 99)-net over F4, using
- net from sequence [i] based on digital (61, 98)-sequence over F4, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F4 with g(F) = 61 and N(F) ≥ 99, using
- net from sequence [i] based on digital (61, 98)-sequence over F4, using
(67, 251, 329)-Net over F4 — Upper bound on s (digital)
There is no digital (67, 251, 330)-net over F4, because
- extracting embedded orthogonal array [i] would yield linear OA(4251, 330, F4, 184) (dual of [330, 79, 185]-code), but
- residual code [i] would yield OA(467, 145, S4, 46), but
- the linear programming bound shows that M ≥ 75449 327415 575534 134401 312271 358364 202586 988312 764269 677821 187597 326851 676773 310740 281541 900157 618938 630703 879340 724024 839258 891498 301173 934871 113793 698587 844036 163230 383972 563369 936814 080000 / 3 442382 810781 772421 076115 876775 468779 327697 682460 018151 373513 549713 415301 402628 670590 013076 362535 108026 742348 698089 724569 107664 952341 600266 478360 191877 > 467 [i]
- residual code [i] would yield OA(467, 145, S4, 46), but
(67, 251, 440)-Net in Base 4 — Upper bound on s
There is no (67, 251, 441)-net in base 4, because
- the generalized Rao bound for nets shows that 4m ≥ 13 929302 412449 136647 653936 154549 412133 674256 337108 777379 086878 357665 271078 577563 992696 664564 558199 228929 278211 391462 710439 547406 990927 707350 258341 309360 > 4251 [i]