Best Known (199, 259, s)-Nets in Base 4
(199, 259, 1044)-Net over F4 — Constructive and digital
Digital (199, 259, 1044)-net over F4, using
- 1 times m-reduction [i] based on digital (199, 260, 1044)-net over F4, using
- trace code for nets [i] based on digital (4, 65, 261)-net over F256, using
- net from sequence [i] based on digital (4, 260)-sequence over F256, using
- trace code for nets [i] based on digital (4, 65, 261)-net over F256, using
(199, 259, 3373)-Net over F4 — Digital
Digital (199, 259, 3373)-net over F4, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(4259, 3373, F4, 60) (dual of [3373, 3114, 61]-code), using
- 3113 step Varšamov–Edel lengthening with (ri) = (16, 7, 4, 3, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 17 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 20 times 0, 1, 20 times 0, 1, 20 times 0, 1, 21 times 0, 1, 21 times 0, 1, 22 times 0, 1, 23 times 0, 1, 23 times 0, 1, 24 times 0, 1, 24 times 0, 1, 25 times 0, 1, 25 times 0, 1, 27 times 0, 1, 27 times 0, 1, 27 times 0, 1, 29 times 0, 1, 29 times 0, 1, 30 times 0, 1, 30 times 0, 1, 31 times 0, 1, 32 times 0, 1, 33 times 0, 1, 34 times 0, 1, 35 times 0, 1, 35 times 0, 1, 36 times 0, 1, 38 times 0, 1, 38 times 0, 1, 39 times 0, 1, 40 times 0, 1, 41 times 0, 1, 42 times 0, 1, 44 times 0, 1, 44 times 0, 1, 45 times 0, 1, 47 times 0, 1, 48 times 0, 1, 49 times 0, 1, 50 times 0, 1, 51 times 0, 1, 53 times 0, 1, 54 times 0, 1, 55 times 0, 1, 56 times 0, 1, 58 times 0, 1, 59 times 0, 1, 61 times 0, 1, 63 times 0, 1, 64 times 0, 1, 65 times 0, 1, 67 times 0, 1, 69 times 0, 1, 70 times 0, 1, 72 times 0, 1, 74 times 0, 1, 76 times 0) [i] based on linear OA(460, 61, F4, 60) (dual of [61, 1, 61]-code or 61-arc in PG(59,4)), using
- dual of repetition code with length 61 [i]
- 3113 step Varšamov–Edel lengthening with (ri) = (16, 7, 4, 3, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 17 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 20 times 0, 1, 20 times 0, 1, 20 times 0, 1, 21 times 0, 1, 21 times 0, 1, 22 times 0, 1, 23 times 0, 1, 23 times 0, 1, 24 times 0, 1, 24 times 0, 1, 25 times 0, 1, 25 times 0, 1, 27 times 0, 1, 27 times 0, 1, 27 times 0, 1, 29 times 0, 1, 29 times 0, 1, 30 times 0, 1, 30 times 0, 1, 31 times 0, 1, 32 times 0, 1, 33 times 0, 1, 34 times 0, 1, 35 times 0, 1, 35 times 0, 1, 36 times 0, 1, 38 times 0, 1, 38 times 0, 1, 39 times 0, 1, 40 times 0, 1, 41 times 0, 1, 42 times 0, 1, 44 times 0, 1, 44 times 0, 1, 45 times 0, 1, 47 times 0, 1, 48 times 0, 1, 49 times 0, 1, 50 times 0, 1, 51 times 0, 1, 53 times 0, 1, 54 times 0, 1, 55 times 0, 1, 56 times 0, 1, 58 times 0, 1, 59 times 0, 1, 61 times 0, 1, 63 times 0, 1, 64 times 0, 1, 65 times 0, 1, 67 times 0, 1, 69 times 0, 1, 70 times 0, 1, 72 times 0, 1, 74 times 0, 1, 76 times 0) [i] based on linear OA(460, 61, F4, 60) (dual of [61, 1, 61]-code or 61-arc in PG(59,4)), using
(199, 259, 633045)-Net in Base 4 — Upper bound on s
There is no (199, 259, 633046)-net in base 4, because
- the generalized Rao bound for nets shows that 4m ≥ 858103 864035 122720 470338 525181 915643 368529 560990 081942 251357 752760 053466 918304 871175 775240 070326 128695 886451 166087 645030 538603 105227 869860 522927 865756 863712 > 4259 [i]